Document Type : Original Article

Authors

1 Department of materials & Metallurgy, Shahid Bahonar University of Kerman, Kerman, Iran

2 Department of materials & Metallurgy, Shahid Bahonar University of Kerman, Kerman, Iran

3 Department of materials & Metallurgy, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

< p>One of the main methods for the synthesis of amorphous and nanostructured carbon is the mechanical milling of graphite. However, calculation and anticipation of the amorphous phase during the mechanical milling of graphite still is a major challenge due to a lot of important parameters. The main aim of this study is to mass-produce amorphous carbon and predict the crystallite size of graphite. For this purpose, ball-milling of graphite powder was carried out at different times of milling. Then, the destruction of crystal structure and changes in phases were studied by XRD, TEM, AFM, SEM, and Zeta Seizer. The results of theMAUD analysis showed that 91% and 93% of the unmilled graphite were converted to amorphous carbon at 250 and 330 hours of ball-milling, respectively. In order to predict the crystallite size of carbon during the high energy ball-milling, the effective variables in the ball-milling process along with the initial crystallite size of carbon were determined as the input of the artificial neural network (ANN). Moreover, the final crystallite size of carbon was considered as the output of the network. The designed network with a root mean square error (RMSE) of 4% was able to predict the crystallite size of carbon during the process. Finally, by comparing the experimental results and the designed model, it was shown that the predicted results were very close to the experimental outcomes. Accordingly, the presented model can be used for predicting the crystallite size of carbon during the mechanical milling of graphite.

Graphical Abstract

High-yield Production of Amorphous Carbon via Ball Milling of Graphite and Prediction of Its Crystallite Size through ANN

Keywords

Main Subjects

[1] A. Savvatimskiy. Carbon at high temperatures, 2015, 134, 1-235. [crossref], [Google Scholar], [Publisher]
[2] S.O. Mirabootalebi, G.H. Akbari, R.M. Babaheydari, Asian Journal of Nanosciences and Materials, 2021, 5. [crossref], [Google Scholar], [Publisher]
[3] F. Risplendi, G. Cicero, J.C. Grossman, ACS Energy Letters, 2017, 2, 882-888. [crossref], [Google Scholar], [Publisher]
[4]  X. Zhang, X. Zhang, Z. Ren, J. Hu, M. Gao, H. Pan, and Y. Liu. Frontiers in Chemistry, 2020,8. [crossref], [Google Scholar], [Publisher]
[5] S. Kundoo, S. Kar, International Journal of Engineering, Science and Mathematics, 2018, 7, 400-407. [crossref], [Google Scholar], [Publisher]
[6]  S.O. Mirabootalebi, G. Akbari, Int. J. Bio-Inorg. Hybr. Nanomater, 2017, 6, 49-57. [crossref], [Google Scholar], [Publisher]
 [7] S.O. Mirabootalebi, Advanced Composites and Hybrid Materials, 2020, 3, 336-343. [crossref], [Google Scholar], [Publisher]
[8]  C.T. Toh, H. Zhang, J. Lin, A.S. Mayorov, Y.P. Wang, C.M. Orofeo, D.B. Ferry, H. Andersen, N. Kakenov, and Z. Guo.  Nature, 2020, 577, 199-203. [crossref], [Google Scholar], [Publisher]
[9]  Y.M. Manawi, A. Samara, T. Al-Ansari, M.A. Atieh. Materials, 2018, 11, 822. [crossref], [Google Scholar], [Publisher]
[10]       D. Amans, M. Diouf, J. Lam, G. Ledoux, C. Dujardin. Journal of colloid and interface science, 2017, 489, 114-125. [crossref], [Google Scholar], [Publisher]
[11]       D. Zhang, F. Liang, K. Ye, T. Qu, Y. Dai, The Minerals, Metals & Materials Series, 2020, 735-741. [crossref], [Google Scholar], [Publisher]
 [12]      I.Y. Bu, L.Y. Kao, International Journal of Nanomanufacturing, 2017, 13, 161-169. [crossref], [Google Scholar], [Publisher]
[13] J.   Tu, J. Wang, S. Li, W.L. Song, M. Wang, H. Zhu, S. Jiao, Nanoscale, 2019, 12537-12546. [crossref], [Google Scholar], [Publisher]
[14]       Ö. Güler, E. Evin, Fullerenes, Nanotubes and Carbon Nanostructures, 2015, 23, 463-470. [crossref], [Google Scholar], [Publisher]
[15]       J.C. Rietsch, R. Gadiou, C. Vix-Guterl, J. Dentzer, Journal of alloys and compounds, 2010, 491, L15-L19. [crossref], [Google Scholar], [Publisher]
[16]       Q. Tang, J. Wu, H. Sun, S. Fang, Journal of alloys and compounds, 2009, 475, 429-433. [crossref], [Google Scholar], [Publisher]
[17]       M. Francke, H. Hermann, R. Wenzel, G. Seifert, K. Wetzig, Carbon, 2005, 43, 1204-1212. [crossref], [Google Scholar], [Publisher]
[18]       T. Fukunaga, K. Nagano, U. Mizutani, H. Wakayama, Y. Fukushima, Journal of non-crystalline solids, 1998, 232, 416-420. [crossref], [Google Scholar], [Publisher]
[19]       N. Welham, J. Williams, Carbon, 1998, 36, 1309-1315. [crossref], [Google Scholar], [Publisher]
[20]       S. Walczak, Artificial neural networks, 2019, 40-53. [crossref], [Google Scholar], [Publisher]
 [21]      P.D. Berger, R.E. Maurer, G.B. Celli, in Experimental Design. 2018, 449-480. [crossref], [Google Scholar], [Publisher]
[22]       O. Kramer, Genetic algorithm essentials, 2017, 679, 11-19. [crossref], [Google Scholar], [Publisher]
 [23]      M. Van Gerven, S. Bohte, Frontiers in Computational Neuroscience, 2017, 11, 114. [crossref], [Google Scholar], [Publisher]
[24]       A.M. Rashidi, A.R. Eivani, A. Amadeh, Computational Materials Science, 2009, 45, 499-504. [crossref], [Google Scholar], [Publisher]
 [25]      V. Singh, P. Banerjee, S. Tripathy, V. Saxena, and R. Venugopal, Journal of Powder Metallurgy and Mining, 2013, 2, 2-5. [crossref], [Google Scholar], [Publisher]
 [26]      S.O. Mirabootalebi, R.M. Babaheydari, Iranian Journal of Organic Chemistry, 2019, 11, 2731-2737. [crossref], [Google Scholar], [Publisher]
 [27]      R.M Babaheydari, S.O Mirabootalebi, Journal of Environmental Friendly Materials, 2020, 4, 31-35. [crossref], [Google Scholar], [Publisher]
 [28]      C. Suryanarayana, Mechanical alloying and milling. Progress in materials science, 2001, 46, 1-184. [crossref], [Google Scholar], [Publisher]
[29]       H. Hermann, T. Schubert, W. Gruner, N. Mattern, Nanostructured materials, 1997, 8, 215-229. [crossref], [Google Scholar], [Publisher]
[30]       J.S.C. Jang, C.C. Koch, Journal of Materials Research, 1990, 5, 498-510. [crossref], [Google Scholar], [Publisher]
[31]       S.A. Manafi, M.H. Amin, M.R. Rahimipour, E. Salahi, A. Kazemzadeh, New Carbon Materials, 2009, 24, 39-44. [crossref], [Google Scholar], [Publisher]
[32] I.N.               Da Silva, D.H. Spatti, R.A. Flauzino, L.H.B. Liboni, S.F. dos Reis Alves, Artificial neural networks, 2017, 21-28. [crossref], [Google Scholar], [Publisher]
[33]       X. Yue, L. Li, R. Zhang, F. Zhang, Materials characterization, 2009, 60, 1541-1544. [crossref], [Google Scholar], [Publisher]
[34]       M.P. Pileni, New Journal of Chemistry, 1998, 22, 693-702. [crossref], [Google Scholar], [Publisher]
[35]       M.R. Johan, L.S. Moh, Carbon, 2013, 8, 1047-1056. [crossref], [Google Scholar], [Publisher]
[36]       S. Manafi, M.R. Rahimipour, I. Mobasherpour, A. Soltanmoradi , Journal of Nanomaterials, 2012, 2012. 1-8. [crossref], [Google Scholar], [Publisher]
[37]       T.D. Shen, W.Q. Ge, K.Y. Wang, M.X. Quan, J.T. Wang, W.D. Wei, C.C. Koch, Nanostructured materials, 1996, 7, 393-399. [crossref], [Google Scholar], [Publisher]
[38] Y. Kuga, M. Shirahige, Y. Ohira, K. Ando. Carbon, 2002, 40, 695-701. [crossref], [Google Scholar], [Publisher]
[39]       J.L. Li, L.J. Wang, G.Z. Bai, W. Jiang, Scripta materialia, 2006, 54, 93-97. [crossref], [Google Scholar], [Publisher]
[40]       P. Kun, F. Wéber, C. Balázsi. Open Chemistry, 2011, 9, 47-51. [crossref], [Google Scholar], [Publisher]
[41]       Ö. GÜLER, E. Evin, Optoelectronics and Advanced Materials-Rapid Communications, 2012, 6, 183-187. [crossref], [Google Scholar], [Publisher]
 [42]      G. Williamson, W. Hall, Acta metallurgica, 1953, 1, 22-31. [crossref], [Google Scholar], [Publisher]
[43]       T. Varol, S. Ozsahin. Particulate Science and Technology, 2019, 37, 381-390. [crossref], [Google Scholar], [Publisher]
[44]       T. Varol, A. Canakci, S. Ozsahin, Journal of Alloys and Compounds, 2018, 739, 1005-1014. [crossref], [Google Scholar], [Publisher]
[45] U. Devadiga, R.K.R. Poojary, P. Fernandes, Journal of Materials Research and Technology, 2019, 8, 3970-3977. [crossref], [Google Scholar], [Publisher]
[46]       S. Panda, G. Panda, Neural Processing Letters, 2020, 51, 1869-1889. [crossref], [Google Scholar], [Publisher]
[47]       R. An, W.J. Li, H.G Han, J.F. Qiao, 35th Chinese Control Conference (CCC), 2016, 3630-3635. [crossref], [Google Scholar], [Publisher]
 [48] M. Zeraati, G.R. Khayati. Journal of Ultrafine Grained and Nanostructured Materials, 2018, 51, 183-192. [crossref], [Google Scholar], [Publisher]