Document Type : Original Article

Authors

1 Karmaveer Bhaurao Patil Mahavidyalaya Pandharpur, Dist. Solapur (M.S.) 413304 India

2 Shardabai Pawar Mahila College Shardanagar, Baramati, Dist. Pune (M.S.) 413102 India

3 Lal Bahadur Shastri College of Arts, Science and commerce, (M.S.) Satara. 415002. India

10.22034/jaoc.2021.285031.1017

Abstract

An efficient, rapid and green protocol has been developed for synthesis of 2,3-diaryl-4-thiazolidinones in aqueous micellar emulsion of anionic surfactant, sodium dodecyl sulphate (10 mol % SDS) at reflux condition. 11 examples leading to different 4-thiazolidinones are presented with a range of 77-85% of yields. Various substituted reactants are compatible with the developed procedure which shows versatility of the new synthetic method. The process is simple and high yielding.

Graphical Abstract

Convenient synthesis of 2,3-diaryl-4-thiazolidinones in aqueous SDS micelles

Keywords

Introduction

Thiazolidinones are receiving much importance and are extensively studied in recent years due to their synthetic and biological significance. They constitute an important group of heterocyclic compounds having valuable biological activities from pharmaceutical and agrochemical point of view [1]. The biological activities of thiazolidinones are considered to be associated with their capability to assume a ‘butterfly like’ conformation. Some of the interesting biological activities exhibited by thiazolidinone derivatives are anticancer [2] antimalarial [3], antitubercular [4], anti-histaminic [5], anti-convulsunt [6], antibacterial [7], antifungal [8], antiarrythmic [9], antioxidant [10], antagonist, anti-inflammatory [11], COX-1 inhibitor [12], anti-HIV [13] and entamoebahistolytica inhibitory [14]. Some thiazolidinone derivatives also act as hypoglycemic agents [15]. Following is a short review on therapeutical importance of 4-thiazolidinones.

Brown and Singh et al., reviewed the synthesis, chemical reactivity and biological activity of 4-thiazolidinones [16]. Sala et al. synthesised 2,3-thiazolidin-4-one derivatives and tested for cytotoxic activity on human breast cancer cell lines [17]. Recently, Avdieiev et al. reported thiazolidinone derivatives as Bradykinin antagonists [18].

Thiazolidinone nucleus has been considered as a magic moiety (wonder nucleus); particularly, 4-thiazolidinone moiety is very versatile and has featured in many drugs such as Ralitoline (A) and Etozoline (B). Several compounds with 4-thiazolidinone core structure have been found to be selectively effective against drug resistant cancer cells and induce cell death [19].

[1]. A. Verma, S. Saraf, Eur. J. Med. Chem., 2008, 43, 897-905. [Crossref], [Google scholar], [Publisher]
[2]. Q. Zhang, H.Y. Zhou, S.M. Zhai, B. Yan, Curr. Pharm. Des., 2010, 16, 1826-1842. [Crossref], [Google scholar], [Publisher]  
[3]. V.R. Solomon, W. Haq, K. Srivastava, S.K. Puri, S.B. Katti, J. Med. Chem., 2007, 50, 394–398.[Crossref], [Google scholar], [Publisher]  
[4]. G.C. Kucukguzel, J.R. Shchullek, A. Kaocatepe, E. De Clercq, F. Sahinv, M. Gulluce, Eur. J. Med. Chem., 2006, 41, 353-359. [Crossref], [Google scholar], [Publisher]
[5]. M.V. Diurno, O. Mazzoni, P.E. Calignano, F. Giorodano, A. Bolognese, J. Med. Chem., 1992, 35, 2910-2912. [Crossref], [Google scholar], [Publisher]
[6]. Archana, V.K. Srivastava, A. Kumar, Eur. J. Med. Chem., 2002, 37, 873-882. [Crossref], [Google scholar], [Publisher]
[7]. V.S. Palekar, A.J. DamLe, S.R. Shukla, Eur. J. Med. Chem., 2009, 44, 5112-5116. [Crossref], [Google scholar], [Publisher]
[8]. H.-L. Liu, Z. Lieberzeit, T. Anthonsen, Molecules, 2000, 5, 1055-1061. [Crossref], [Google scholar], [Publisher]
[9]. C.M. Jackson, B. Blass, K. Coburn, L. Djandjighian, G. Fadayel, A.J. Fluxe, S.J. Hodson, J.M. Janusz, M. Murawsky, J.M. Ridgeway, R.E. White, S. Wu, Bioorg. Med. Chem. Lett., 2007, 17, 282-284. [Crossref], [Google scholar], [Publisher]
[10]. M.H. Shih, F.Y. Ke, Bioorg. Med. Chem., 2004, 12, 4633-4643. [Crossref], [Google scholar], [Publisher]
[11]. J. Hu, Y. Wang, X. Wei, X. Wu, G. Chen, G. Cao, X. Shen, X. Zhang, Q. Tang, G. Liang, X. Li, Eur. J. Med. Chem., 2013, 64, 292-301. [Crossref], [Google Scholar], [Publisher]
[12]. G.C. Look, J.R. Schullek, C.P. Homes, J.P. Chinn, E.M. Gordon, M.A. Gallop, Bioorg. Med. Chem. Lett., 1996, 6, 707-712. [Crossref], [Google Scholar], [Publisher]
[13]. H. Chen, T. Yang, S. Wei, H. Zhang, R. Li, Z. Qin, X. Li, Bioorg. Med. Chem. Lett., 2012,22, 7041-7044. [Crossref], [Google Scholar], [Publisher]
[14]. M. Mushtaque, F. Avecilla, A. Azam, Eur. J. Med. Chem., 2012, 55, 439-448. [Crossref], [Google scholar], [Publisher]
[15]. A.K. Jaina, A. Vaidyaa, V. Ravichandranb, S.K. Kashawa, R.K. Agrawala, Bioorg. Med. Chem., 2012, 20, 3378-3395. [Crossref], [Google scholar], [Publisher]
[16]. S.P. Singh, S.S. Parmar, K. Raman, V.I. Stenberg, Chem. Rev., 1981, 81, 175-203. [Crossref], [Google scholar], [Publisher]
[17]. M. Sala, A. Chimento, C. Saturnino, I.M. Gomez-Monterrey, S. Musella, A. Bertamino, C. Milite ,M.S. Sinicropi, A. Caruso, R. Sirianni, P. Tortorella, E. Novellino, P. Campiglia, V. Pezzi, Bioorg. Med. Chem. Lett., 2013, 23, 4990-4995. [Crossref], [Google scholar], [Publisher]
[18]. S. Avdieiev, L. Gera, D. Havrylyuk, R.S. Hodges, R. Lesyk, V. Ribrag, Y. Vassetzky, V. Kavsan, Bioorg. Med. Chem., 2014, 22, 3815-3823. [Crossref], [Google scholar], [Publisher]
[19]. D. Havrylyuk, L. Mosula, B. Zimenkovsky, O. Vasylenko, A. Gzella, R. Lesyk, Eur. J. Med. Chem., 2010, 45, 5012-5021. [Crossref], [Google scholar], [Publisher]
[20]. P.M. Ronad, M.N. Noolvi, S. Sapkal, S. Dharbhamulla, V.S. Maddi, Eur. J. Med. Chem., 2010, 45, 85-89. [Crossref], [Google scholar], [Publisher]
[21]. A.K. Jain, A. Vaidya, V. Ravichandran, S.K. Kashaw, R. K. Agrawal, Bioorg. Med. Chem., 2012, 20, 3378-3395. [Crossref], [Google scholar], [Publisher]
[22]. S.S. Jadav, B.N. Sinha, R. Hilgenfeld, B. Pastorino, X. Lamballerie, V. Jayaprakash, Eur. J. Med. Chem., 2015, 89 172-178. [Crossref], [Google Scholar], [Publisher]
[23]. K.S.S. Kumar, A. Hanumappa, M. Hegde, K.H. Narasimhamurthy, S.C. Raghavan, K.S. Rangappa, Eur. J. Med. Chem., 2014, 81, 341-349. [Crossref], [Google Scholar], [Publisher]
[24]. W. Cunico, C.R.B. Gomes, Jr. Vellasco, T. Walcimar, Mini Rev. Org. Chem., 2008, 5, 336-344. [Crossref], [Google scholar], [Publisher]
[25]. R. Markovic, M.Stodanovic, Heterocycles, 2005, 56, 2635-2647. [Crossref], [Google scholar], [Publisher]
[26]. M.P. Thakare, P. Kumar, N. Kumar, S.K. Pandey Tetrahedron Lett., 2014, 55, 2463-2466. [Crossref], [Google scholar], [Publisher]
[27]. U.R. Pratap, D.V. Jawale, M.R. Bhosle, R.A. Mane, Tetrahedron Lett., 2011, 52, 1689-1691. [Crossref], [Google Scholar], [Publisher]
[28]. J.R. Mali, U.R. Pratap, P.D. Netankar, R.A. Mane, Tetrahedron Lett., 2009, 50, 5025-5027. [Crossref], [Google scholar], [Publisher]
[29]. A. Bolognese, G. Correale, M. Manfra, A. Lavecchia, E. Novellino, V. Barone, Org. Biomol. Chem., 2004, 2, 2809-2813. [Crossref], [Google scholar], [Publisher]
[30]. T. Srivastava, W. Haq, S.B. Katti, Tetrahedron, 2002, 58, 7619-7624. [crossref], [Google scholar], [Publisher]
[31]. R.K. Rawal, T. Srivastava, W. Haq, S.B. Katti, J. Chem. Res., 2004, 5, 368-369. [crossref], [Google scholar], [Publisher]
[32]. A.K. Yadav, M. Kumar, T. Yadav, R. Jain, Tetrahedron Lett., 2009, 50, 5031-5034.  [crossref], [Google scholar], [Publisher]
[33]. V. Kanagarajana, J. Thanusua, M. Gopalakrishnana, Green Chem. Lett. Rev., 2009, 2, 161-167. [Crossref], [Google scholar], [Publisher]
[34]. D.L. Ligampalle, D. Jawale, R.A. Waghmare, R.A. Mane, Syn. Commun., 2010, 40, 2397-2401. [crossref], [Google scholar], [Publisher]
[35]. N. Azgomi, M. Mokhtary,J. Mol. Catal. A: Chem., 2015, 398, 58-64. [crossref], [Google scholar], [Publisher]
[36]. S.M. Sadeghzadeh, F.Daneshfar, J. Mol. Liq., 2014, 199, 440-444. [crossref], [Google scholar], [Publisher]
[37]. V. Gududuru, V. Nguyen, J.T. Dalton, D.D. Miller, Synlett, 2004, 13, 2357-2358.  [crossref], [Google scholar], [Publisher]
[38]. T. Kato, T. Ozaki, K. Tamura, Y. Suzuki, M. Akima, N. Ohi, J. Med. Chem., 1999, 42, 3134-3146. [Crossref], [Google scholar], [Publisher]
[39]. I.T. Horvath, P.T. AnastasChem. Rev., 2007, 107, 6, 2167-2168. [crossref], [Google scholar], [Publisher]
[40]. P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press: Oxford, 1998.
[41]. R. Breslow, Acc. Chem. Res., 1991, 24, 159-164. [crossref], [Google scholar], [Publisher]  
[42]. K. Manabe, X.M. Sun, S. Kobayashi, J. Am. Chem. Soc., 2001, 123, 10101-10102. [crossref], [Google scholar], [Publisher]
[43]. N. Iranpoor, H. Firouzabadi, M.Shekarrize, Org. Biomol. Chem., 2003, 724-727. [crossref], [Google scholar], [Publisher]
[44]. H. Firouzabadi, N. Iranpoor, A.A. Jafari, Adv. Synth. Catal., 2005, 347, 655-661. [crossref], [Google scholar], [Publisher]
[45]. (a) B.S. Londhe, U.R. Pratap, J.R. Mali, R.A. Mane, Bull. Korean Chem. Soc.,2010, 20, 2329–2332. [crossref], [Google scholar], [Publisher] (b) B.S. Londhe, S.L. Padwal, M.R. Bhosale, R.A. Mane, J. Iran. Chem. Soc., 2016, 13, 443–447. [crossref], [Google scholar], [Publisher] (c) B.S. Londhe, S.L. Khillare, A.M. Nalawade, R.A. Mane, Int. J. Res.Eng. Sci., 2021, 9, 79-84. [crossref], [Google scholar], [Publisher]  (d) B.S. Londhe, S.L. Khillare, A.M. Nalawade, R.A. Mane, Int. J. of Adv. Res., 2021, 9, 189-195. [crossref], [Google scholar], [Publisher]
[46]. A. Bolognese, G. Correate, M. Manfra, A. Lavecchia, E. Novellino, V. Barone, Org. Bio. Mol. Chem., 2004, 2, 2809-2813. [crossref], [Google scholar], [Publisher]