Document Type : Original Article


1 USIC, Dayalbagh Educational Institute, Dayalbagh, Agra-282005, India

2 Pondicherry University, Puducherry-605014, India


The present study aimed at describing silver nanoparticles based functionalized multiwalled carbon nanotubes modified screen printed carbon electrode (Ag/CNT/SPE) for an effective determination of an opioid analgesic drug butorphanol (BTR). The suspension of Ag/CNT prepared was drop casted onto the surface of SPE. The surface morphology of the nanocomposite was studied using XRD, FESEM, EDX, FT-IR, and UV-Vis. Ag/CNT/SPE showed a remarkable enhancement in the peak current values in cyclic and square wave voltammograms when compared with that of the CNT/SPE, Ag/SPE and bare carbon SPE. The anodic phenomenon of BTR occurring at Ag/CNTs/SPE was found to be a function of pH of the medium, concentration and scan rate of BTR. The oxidation peak current was found proportional to the BTR concentration within the linear range of 1.05-10.45 µM, with a detection limit of 2.15 µM (LOD) and the quantification limit of 7.18 µM (LOQ). The redox mechanism of BTR at the modified electrode was evaluated after optimizing the electrode dynamic parameters. The sensor was further scrutinized for the successful quantification of BTR in the pharmaceutical formulation.

Graphical Abstract

Silver nanoparticles decorated functionalized multiwalled carbon nanotubes modified screen printed sensor for the voltammetric determination of butorphanol


Main Subjects

[1] J. Lenik, Curr. Med. Chem., 2017, 24, 2359-2391.[Crossref], [Google scholar], [Publisher]
[2] F. Arduini, L. Micheli, D. Moscone, G. Palleschi, S. Piermarini, F. Ricci, G. Volpe, Trends Analyt. Chem., 2016, 79, 114-126, [crossref], [Google scholar], [Publisher]
[3] P. Chuntib, S. Themsirimongkon, S. Saipanya, J. Jakmunee, Talanta, 2017, 170, 1-8, [crossref], [Google scholar], [Publisher].
[4] F. Lopes, J. G. Pacheco, P. Rebelo, C.D. Matos, Sens. Actuat. B Chem., 2017, 243, 745-752, [Crossref], [Google scholar], [Publisher]
[5]  R. Gusmão, V. L. Puente, L. Yate, I.P. Santos, J.P. Juste, E.G. Romero, Mater. Today Commun., 2017, 11, 11-17,  [crossref], [Google scholar], [Publisher]
[6] J. Agrisuelas, M.I.G. Sánchez, E. Valero, Sens. Actuat. B Chem., 2017, 249, 499-505, [Crossref], [Google scholar], [Publisher].
[7] Q. Qin, X. Bai, Z. Hua, J. Electroanal. Chem., 2016, 782, 50-58, [crossref], [Google scholar], [Publisher]
[8]  N.H. Ibáñez, L.G. Cruz, V. Montiel, C.W. Foster, C.E. Banks, J. Iniesta.,Biosens. Bioelectron., 2016, 77, 1168-1174,[crossref], [Google scholar], [Publisher]  .
[9] L. M. Ochiai, D. Agustini, L. C. S. F. Filho, C.E. Banks, L. H. M. Junior, M.F. Bergamini, Sens. Actuat. B Chem., 2017, 241, 978-984, [crossref], [Google scholar], [Publisher]
[10]           P. Bollella, G. Fusco, C. Tortolini, G. Sanzò, G. Favero, L. Gorton, R. Antiochia, Biosens. Bioelectron., 2017, 89, 152-166, [Crossref], [Google scholar], [Publisher]
[11]           G. I. N. Redín, D. Wilson, D. Gonçalves, O.N. Oliveira, J. Colloid Interface Sci., 2017, 515, 101-108, [Crossref], [Google Scholar], [Publisher].
[12]           S. Ansari, M.S. Ansari, S.P. Satsangee, R. Jain, Anal. Chim. Acta., 2019, 1046, 99-109, [Crossref], [Google scholar], [Publisher]
[13]           S. Ansari, M.S. Ansari, H. Devnani, S.P. Satsangee, R. Jain, Sensor Actuat B: Chem., 2018, 273, 1226-1236,[Crossref], [Google scholar], [Publisher]
[14]           S. Lim, Z.R. Mel.rose, E.T. Thostenson, T.W. Chou, Compos. Sci. Technol., 2011, 71, 1183-1189, [Crossref], [Google scholar], [Publisher]
[15]           R.Y.A. Hassan, M.A. Sultan, M.M. A.E. Alamin, M.A. Atia, H.Y.A. Enein, Electroanal., 2017, 29, 843 – 849, [crossref], [Google scholar], [Publisher]
[16]           Q. Zhao, S. Tan, M. Xie, Y. Liu, J. Yi, J. Alloy. Compd., 2018, 737, 31-38, [Crossref], [Google scholar], [Publisher]
[17]           X. Yan, S. Li, J. Bao, N. Zhang, B. Fan, R. Li, X. Liu, Y. X. Pan, ACS Appl. Mater. Interfaces., 2016, 8, 17060–17067, [crossref], [Google scholar], [Publisher]
[18]           D.W. Boulton, G. F. Duncan, N. N. Vachharajani, J. Chromatogr. B., 2002, 775, 57–62, [crossref], [Google scholar], [Publisher]
[19]           M. D. Smith, B. A. Connor, H. I. Karunadasa, Chem. Rev., 2019, 119, 3104–3139, [crossref], [Google scholar], [Publisher]
[20]           G. Landberg, E. Jonasson, A. Gustafsson, P. Fitzpatrick, P. Isakson, J. Karlsson, E. Larsson, A. Svanstr¨om , S. Rafnsdottir, E. Persson, D. Andersson, J. Rosendahl, S. Petronis, P. Ranji, P. Gregersson, Y. Magnusson, J. Hakansson, A. Stahlberg, Data Brief. (Biomaterials), 2020, 235, 119705, [Crossref], [Google scholar], [Publisher]
[21]           J. Piechocka, M. Wronska, G. Chwatko, H. Jakubowski, R. Glowacki, J. Chromatogr. B., 2020, 1149, 122155, [crossref], [Google scholar], [Publisher]
[22]           Z. Mala, P. Gebauer, Electrophor., 2018, 0, 1–10, [Crossref], [Google scholar], [Publisher]
[23]           S. Boonkaew, P. Teengam, S. Jampasa, S. Rengpipat, W. Siangproh, O. Chailapakul, Analyst., 2020, 14, 1-8, [Crossref], [Google scholar], [Publisher]
[24]           M. Niwa, T. Nose, M. Nozaki, K. Tsurmi, H. Fujimura, Japan. J. Pharmacol.,1985, 39, 515-528, [Crossref], [Google scholar], [Publisher]
[25]           E. Troncy, J. G. Besner, R. Charbonneau, S. G. Cuvelliez, D. Blais, J. Vet. Pharmacol. Therap., 1996, 19, 268-273,[crossref], [Google scholar], [Publisher]
[26]           M. S. Sengar, S. Saxena, A. Lakhani, S. P. Satsangee, Asian J. Green Chem., 2021, 5, 206-218,[Crossref], [Google scholar], [Publisher]
[27]           G. J. H. Melvin, Q. Q. Ni, T. Natsuki, Z. Wang, S. Morimoto, M. Fujishige, K. Takeuchi, Y. Hashimoto, M. Endo, Synth. Met., 2015, 209, 383–388,[crossref], [Google Scholar], [Publisher]
[28]           D. A. Skoog, D. M. West, F. J. Holler, S. R. Crouch, Fundamentals of Analytical Chemistry, Mary Flinch, Belmount, CA, USA., 2013; p 1072.
[29]           F. Wu, D. Liu, T. Wang, W. Li, X. Zhou, J. Mater. Sci.: Mater. Electron., 2015, 26, 6781–6786, [crossref], [Google scholar], [Publisher]
[30]           V. Mani, M. Govindasamy, S.M. Chen, T. W. Chen, A. S. Kumar, S. T. Huang, Sci. Rep., 2017, 7, 11910,[Crossref], [Google scholar], [Publisher]
[31]           Q. Zhang, L. Liu, D. Zhao, Q. Duan, J. Ji, A. Jian, W. Zhang, S. Sang, Nanomater., 2017, 7, 1-12,[Crossref], [Google scholar], [Publisher]
[32]           R. X. Dong, C. T. Liu, K. C. Huang, W. Y. Chiu, K. C. Ho, J. J. Lin, ACS Appl. Mater. Interfaces., 2012, 4, 1449–1455,[Crossref], [Google scholar], [Publisher]
[33]           F. Tian, X. Dong, Z. Zhao, J. He, H. T. Wang, J. Phys.: Condens. Matter., 2012, 24, 165504, [Crossref], [Google Scholar], [Publisher]
[34]           G. H. Priyaa, K. B. Satyan, J. Environ. Nanotechnol., 2014, 3, 32-40,[Crossref], [Google scholar], [Publisher]
[35]           Y.Dou, H. Liu, J. Peng, M. Li, W. Li, F. Yang, J. Mater. Sci.,2016, 51, 5685–5694, [Crossref], [Google scholar], [Publisher]
[36]           M. Satyanarayana, K. Y. Goud, K. K. Reddy, V. S. Kumar, K. V. Gobi, Mater. Sci. Eng. C., 2019, 101, 103-110, [Crossref], [Google scholar], [Publisher]
[37]           S. H. Lee, C. C. Teng, C. C. M. Ma, I. Wang, J. Colloid Interface Sci., 2011, 364, 1–9,[Crossref], [Google scholar], [Publisher]
[38]           L. Li, L. R. Xia, H. Y. Wang, X. D. Bi, J. Appl. Polym. Sci., 2015, 132, 41792, [crossref], [Google scholar], [Publisher]
[39]           N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, J. L. Dempsey, ACS J. Chem. Edu., 2018, 95, 197-206, [crossref], [Google scholar], [Publisher]
[40]           J. MacLeod, Appl. Math. Comput., 199357, 305–310,[Crossref], [Google Scholar], [Publisher]
[41]           M. L. Yola, V. K. Gupta, T. Eren, A. E. Şen, N. Atar, Electrochim. Acta., 2014, 120, 204-211, [Crossref], [Google scholar], [Publisher].
[42]           M. L. Yola, N. Atar, T. Eren, H. K. Maleh, S. Wang, RSC Adv., 2015, 5, 65953-65962,[crossref], [Google Scholar], [Publisher]