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A B S T R A C T 
 

3D-QSAR, comparative molecular field analysis- smart region description (SRD) 
and fractional factorial design (FFD) (CoMFA-FFD), and comparative molecular 
field analysis-uninformative variable elimination-partial least square (CoMFA-
UVEPLS) were conducted on 44 compounds. CoMFA-FFD and CoMFA-UVEPLS 
models give dependable complementary and prescient capacities; however, the 
CoMFA-FFD model did was to a little degree or degree better than CoMFA-
UVEPLS. From the contour maps generated from the CoMFA-FFD and CoMFA-
UVEPLS models, more important features were identified to boast the chemical 
structures that were responsible for inhibitors of the glycoprotein (GPC) of Lassa 
(LASV) Arenavirus. Secondly, docking was performed between the compounds 
and protein to predict their binding affinity. Based on the docking simulation 
approach, two compounds have chosen for further evaluation. The MD simulation 
approach was used to confirm the stability of the selected drug candidate to the 
target protein, which confirmed the stability of the selected lead drugs. Docking 
and MD simulations present comparative associations between the protein and 
the ligands. The MD simulations further described hydrogen bond, steric, and 
hydrophobic interactions on the ligand. The standard free binding energy 
calculation revealed that the two selected drug candidates have a significant 
binding affinity for GPC of LASV. The discussion points out positions on the ligands 
and their suggestions on protein interactions. The computational methodology 
utilized in this paper gives solid insights for an additional plan of molecules for 
inhibitors of the glycoprotein (GPC) of Lassa infection (LASV) Arenavirus. 

  

Introduction 

he re-emergence and spread of 
infectious diseases pose a growing 
public health concern across sub-
Saharan Africa [1]. Lassa fever (LF) is 

becoming more and more alarming in 

developing countries like Africa due to its high 
morbidity and mortality [2]. Lassa virus (LSV) 
is the sole etiologic agent of severe 
hemorrhagic fever, which is characterized by 
fever, abdominal pain, sore throat, chest pain, 
cough, muscular pain, vomiting, and nausea [3]. 
Relentless fever might check the beginning of 
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extreme cases with slender draining from 
numerous organs and different examples of 
organ-instigated disappointment [4]. 
Neurological sequelae, like aseptic meningitis 
and encephalopathy, may happen in survivors, 
and hearing misfortune among certain patients 
[5]. Lassa infection is sent as a zoonotic 
sickness by ingestion of food and inward breath 
of sprayers debased with contaminated pee or 
dung of tainted rodent species (Mastomys 
natalensis), which fill in as a repository for the 
LASV [6]. Furthermore, transmission from one 
human to another is through direct contact 
with the blood, pee, defecation, or other 
substantial emissions of a contaminated 
individual [7]. The disease is endemic in West 
Africa; recent outbreaks in Nigeria in the wake 
of the coronavirus pandemic were fatal, larger, 
and more geographically diverse than usual [8]. 

The treatment and management of LASV is 
a plaque by so many factors, crucially, the 
absence of commercially available LASV 
diagnostic test kits, which hampers early 
detection and prompt interventions using 
existing chemotherapeutic agents [9]. 
Unfortunately, there are limited 
chemotherapeutic agents such as the anti-
viral drug ribavirin which is most effective 
in early treatment is a plaque to poor 
efficacy, cost, and adverse side effects, 
while the emergence of drug-resistant 
strains has compromised the efficacy of 
most antiviral agents [10]; vaccine which is 
the ideal option is still far from reality [11]. 
As the world continues to battle the scourge 
of infectious diseases it is imperative to find 
a cost-effective and safe antiviral drug 
against the Lassa fever virus. The 
glycoprotein (GPC), the only antigen 
expressed on the viral surface, is the 
primary target for antibody-mediated 
neutralization [12]. 
One approach to this challenge is the use of 
computational techniques to efficiently 
identify new drug candidates and targets 
that are critical to the LASV survival. The 
LASV nucleoprotein (NP) is an attractive 
drug target protein with distinctive N- and 

C- terminal domains linked by a flexible 
linker [13]. The Lassa virus nucleoprotein 
(NP) is a multifunctional protein that is 
essential for many processes in the viral life 
cycle. These processes include viral 
replication, transcription, RNA 
encapsidation, mobilization of 
ribonucleoprotein complexes to viral 
budding sites, and inhibition of the host 
cell's interferon response [14]. 
For more than three decades, in silico drug 
design has aided pharmaceutical research 
[15,16]. Two major drug design 
methodologies are structural-based and 
ligand-based approaches [17]. The 
molecular hybridization approach has 
become one of the most widely used 
techniques in drug discovery in recent 
years [18]. In silico is a modern approach 
that has several advantages, including 
being less expensive, result-situated, 
limiting creature testing as well as 
preliminaries and blunders, and being less 
tedious, to name a few [19]. In silico 
branches like 3D Quantitative Structure-
Activity Relationships (3D-QSAR), Docking 
Simulation, Molecular Dynamics 
Simulations (MDS), and others have as of 
late made critical commitments to the 
improvement of lead and drug candidates 
[20,21]. A great deal of effort has gone into 
identifying chemicals that act on enzymes 
over the last 30 years, and these efforts 
have resulted in the discovery of several 
active substances. Edache et al. attempted a 
ligand-based comparative molecular fields 
analysis (CoMFA-FFD) study for selective 
HemO inhibitors using computational 
techniques in the hopes of identifying 
selective inhibitors [22]. Edache and 
colleagues used pharmacokinetics and 
Golden triangle studies of Salicylidene 
acylhydrazides analogs, as well as docking 
simulations and molecular dynamics 
simulations, to screen novel drugs for 
Chlamydia trachomatis treatment [23]. 
Alejandro Speck-Planche et al. used  
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homology modeling, linear discriminant 
analysis, molecular docking, and QSAR 
studies to develop a betulinic acid analog 
with a high binding affinity against HIV 
[24]. Furthermore, Ahmad et al. conducted 
molecular docking, simulation, and 
MMPBSA studies on Nigella Sativa and 
Dithymoquinone compounds to identify 
potential natural antivirals for COVID-19 
treatment [25]. 
This study was therefore carried out to 
investigate the use of 3D-structure activity, 
docking simulation, and MDs simulation as 
tools for drug design, activity prediction, 
and development, which involve the 
propagation of a common 3D lattice about a 
set of molecules and calculation of 
interaction energies at the framework [26]. 
The development of a new and effective 

chemotherapeutic agent would be a key 
intervention in an attempt to reduce the 
considerable social and economic impact of 
LASV and hence the disease eradication. 

Experimental 

Methods 

Source of Dataset 

In the Fit_LogAC50 and affinity data set of 7,162 
tested substances, 239 are active, while 6,168 
are inactive. 44 active compounds were 
selected from the data table provided by 
National Center for Advancing Translational 
Sciences were obtained from PubChem [27] 
with PubChem AID No. 1347082. The chemical 
structures of all the compounds are presented 
in Table 1, while the PubChem SID, CID 
number, and Fit_LogAC50 are presented in 
Table 2, respectively. 

 
Table 1. List of the ligand’s molecules used in this research 
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Table 1. Continued 
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3D-QSAR Analysis 

The compounds were first subjected to energy 
minimization, then finally optimized by the 
parameterization method PM6 (a semi-
empirical method) using Spartan’14 software 
[28,29]. The optimized structures were 
transferred to DTC Lab (v.1.2) software [30], 
were Kennard-Stone technique was used for 
data division into training and test set. Where 
the training set is 30 compounds (70%) and the 
test set of 14 compounds (30%) was used for 
the 3D-Quantitative Structure-Activity 
Relationship model.  The exactness of the 
expectation of 3D-QSAR (CoMFA-FFD and 
CoMFA-UVEPLS) models and the unwavering 
quality of the form models rely firmly upon the 
primary arrangement of the atoms [31]. 
Open3Dalign software [32] was used for the 
data set alignment and compound 35 (CID: 
24905149) was used as a template for the 
superimposition. To determine 3D-QSAR 
models, the CoMFA-FFD and CoMFA-UVEPLS 
descriptors were utilized as free factors and the 
Fit_LogAC50 as the reliant variable [33]. PLS 
strategy was utilized to straightly correspond 
these CoMFA-FFD and CoMFA-UVEPLS 
descriptors to the inhibitory activity values. 
The steric (van der Waals) and electrostatic 
(coulomb) fields were calculated. The CoMFA-
FFD and CoMFA-UVEPLS cutoff values were set 
to 30 kcal/mol for both steric and electrostatic 
fields, adjusted particles to a matrix separating 
(grid spacing) of 2.0 Å in Open3DQSAR [34]. 
The cross-approval examination was 
performed using the leave one out (LOO), leave 
two out (LTO), and leave many out (LMO) 
method in which one, two, and more 
compounds, respectively, are eliminated from 
the data set, and their biological activity is 
predicted using a model built from the 
remainder of the data. For subsequent 
investigation, the cross-validated correlation 
coefficient (Q2) with the optimum number of 
components and the lowest standard error of 
prediction was used. 

Molecular Docking  

Docking simulations and molecular dynamic 
simulations helped to understand the ligand-

binding mechanisms [35]. Discovery Studio 
2020 Client was used to remove the water 
molecules and all other heteroatoms from the 
protein crystal structure that was retrieved 
from protein data bank (PDB). The receptor 
(PDB id: 5VK2) was assigned Kollman partial 
charges [36], and then the nonpolar hydrogens 
of the receptor were added using AutoDock 
Tools. During the docking computations, the 
receptor was maintained stiff and all ligand 
torsional bonds were assumed to be free during 
docking calculations. Autodock Vina [37] was 
performed using EasyDockVina v2.2 by 
creating a center (-53.7122 × 59.4839 × -
10.6376), size (44.2198176575 × 
37.9585438919 × 72.891568222), and 
exhaustiveness of 8, around the active site 
residues protein. Accelrys Discovery Studio 
2020 Client examined all of the runs to discover 
the optimal conformation of the ligand with 
critical residues in the active region of the 
protein based on the highest number of clusters 
and the lowest binding affinity [38]. 

Molecular Dynamic Simulation 

Based on the docking results, molecular 
dynamics simulations were carried out on the 
docked protein (Pre-glycoprotein polyprotein 
GP) complex, the TIP3P water model was used 
to run the MD simulation and the calculations 
presented here used the force field CHARMM36 
(CHARMM-GUI server) and were run using the 
NAnoscale Molecular Dynamics program 
(NAMD) program v2.13 [39]. Periodic 
boundary conditions are used in MD 
simulations [40]. The system was neutralized 
with counterions (0.15 M KCl). Two-step 
constant number of particles, volume, and 
temperature (NVT) and constant number of 
particles, pressure, and temperature (NPT) 
were carried out. Minimization was used to 
improve the protein-ligand structure. At 10 ns, 
the temperature of the system was steadily 
increased from 0 K to 303.15 K. Subsequently, 
the system was equilibrated at 303.15 K for 20, 
000 run (20 ps) with the NVT ensemble. The 
simulations were performed in an NPT 
ensemble and periodic boundary conditions 
were used. VMD v1.9.3 [41] was used to 
retrieve and analyze the simulation trajectory.
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Computed Binding free energy calculation 

The MolAlCal [42] is a program that allows you 
to generate and analyze accurate binding free 
energy calculations automatically [43-45]. The 
MolAlCal software was used to calculate the 
standard free binding energy of the protein-
ligand complexes. The relative binding energy 
calculations for the complex (RL) formed when 
the ligand (L) binds to the protein receptor (R), 
whereby contributions from various 
interactions can represent by equation (1-3): 

∆𝐺𝐵𝑖𝑛𝑑𝑖𝑛𝑔 = ∆𝐺𝑅𝐿 − ∆𝐺𝑅 − ∆𝐺𝐿                                 (1) 

∆𝐺𝐵𝑖𝑛𝑑𝑖𝑛𝑔 = ∆𝐻 − 𝑇∆𝑆 = ∆𝐸𝑀𝑀 + ∆𝐺𝑠𝑜𝑙 − 𝑇∆𝑆      (2) 

∆𝐸𝑀𝑀 = ∆𝐸𝑒𝑙𝑒 + ∆𝐸𝑣𝑑𝑤 + ∆𝐸𝑖𝑛𝑡                                 (3) 

Where, ∆𝑬𝑴𝑴 is a combination of the changes 
in the electrostatic energies ∆𝑬𝒆𝒍𝒆 , Van der 
Waals energies ∆𝑬𝒗𝒅𝒘 , and internal energies 

∆𝑬𝒊𝒏𝒕 , ∆𝑮𝒔𝒐𝒍  is the sum of the polar and 
nonpolar solvations (calculated using the 
solvent-accessible surface area and the 
generalized Born model, respectively), and TS 
is determined by the normal mode analysis. For 
MM/GBSA calculations, a solvent dielectric 
constant of 78.5 and a surface tension constant 
of 0.03012 kJ/ mol2 were utilized. 

Results and Discussion 

Using the training set of 30 compounds and the 
test set of 14 compounds, 3D-QSAR (CoMFA-
FFD and CoMFA-UVEPLS) were developed for a 
data set of 44 compounds for inhibitors of 
Glycoprotein (GPC) of LASV, an Arenavirus. 
Table 2 displays predicted and statistical 
findings. Visualization of the CoMFA-FFD and 
CoMFA-UVEPLS model as 3D contour maps was 
performed using the maestro v10.5.014.  

 
Table 2. Experimental activities (Fit_LogAC50) and projected values of QSAR, Docking scores, CoMFA-FFD, 

and CoMFA-UVEPLS 
 

No
. 

PUBCHEM_S
ID 

PUBCHEM_C
ID 

Fit_LogAC
50 

Dockin
g 

Scores 

CoMFA-
FFD 

(FFDSE
L) 

(predict
) 

CoMFA-
FFD 

(Residue
s) 

CoMFA-
UVEPLS 
(UVPLS

) 
(predic

t) 

CoMFA-
UVEPLS 

(Residue
s) 

1T 26747626 6084 -4.8641 -5.6 -4.6306 -0.2335 -4.7225 -0.1416 
2 26754607 73549 -5.4141 -6.2 -5.3249 -0.0892 -5.3176 -0.0965 

3 26756900 5353422 -6.9641 -6.2 -7.0035 0.0394 -7.1301 0.166 

4 26757024 5708351 -4.3641 -6.2 -4.339 -0.0251 -4.3817 0.0176 

5 90340670 2545 -5.4141 -5 -5.184 -0.2301 -5.1868 -0.2273 
6 90341036 1967 -4.6141 -5.9 -4.5412 -0.0729 -4.5238 -0.0903 

7 90341111 4477 -5.6641 -6.3 -5.6425 -0.0216 -5.6436 -0.0205 

8 90341202 5289247 -4.5641 -5.6 -4.8131 0.249 -4.7493 0.1852 

9 90341210 4564402 -5.4141 -5.5 -5.4076 -0.0065 -5.3888 -0.0253 
10 90341221 644213 -4.6141 -5.4 -4.5212 -0.0929 -4.5247 -0.0894 

11 90341237 4680 -4.6641 -5.9 -4.6293 -0.0348 -4.7217 0.0576 
12

T 
104171134 135398737 -4.6141 -5.9 -5.0908 0.4767 -5.1324 0.5183 

13
T 

124881022 5994 -4.7141 -6.5 -5.5296 0.8155 -5.5577 0.8436 

14
T 

124881348o 5102 -7.0141 -7.6 Out - Out - 

15 124882242 3503 -4.6641 -6.8 -4.6278 -0.0363 -4.5733 -0.0908 

16 124883112 6758 -6.7141 -6.4 -6.8097 0.0956 -6.8129 0.0988 

17 124894552 60810 -7.7641 -7.9 -7.6841 -0.08 -7.7153 -0.0488 

18 137275978 51371303 -4.9029 -7 -4.8954 -0.0075 -4.8947 -0.0082 
19

T 
137276002 11282283 -5.0529 -8 -5.8129 0.76 -5.6266 0.5737 
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Table 2. Continued 

 
20T 144204548 5447130 -5.2141 -5.5 -4.8571 -0.357 -4.7744 -0.4397 

21 144213997 4984721 -4.4029 -5.3 -4.5121 0.1092 -4.5286 0.1257 
22 144214029 10800 -4.0529 -5.4 -4.2728 0.2199 -4.3201 0.2672 

23 144214040 5564 -4.4029 -5.3 -4.4781 0.0752 -4.4524 0.0495 

24 144214048 3034285 -4.5029 -6.4 -4.5932 0.0903 -4.5826 0.0797 

25 170464928 5070 -4.6141 -5.3 -4.5498 -0.0643 -4.4978 -0.1163 
26T 170465077 6603149 -4.6141 -6.1 -4.4976 -0.1165 -4.5205 -0.0936 

27 170465739 441140 -4.9141 -5.5 -4.7502 -0.1639 -4.7942 -0.1199 

28 170466326 71768 -4.5141 -7.1 -4.4922 -0.0219 -4.4799 -0.0342 

29 170466763 73828 -5.7141 -5.6 -5.812 0.0979 -5.756 0.0419 
30o 170466836 17693 -8.8641 -4.8 Out - out - 

31T 170466887 
13540945

3 
-5.0641 -5.2 -5.1409 0.0768 -5.1358 0.0717 

32T 174006174 51037431 -4.8141 -6.6 -5.0146 0.2005 -4.9749 0.1608 

33T 174006264 11581936 -4.6641 -7.4 -5.5827 0.9186 -5.3342 0.6701 
34 174006489 9858940 -5.3141 -6.9 -5.3315 0.0174 -5.29 -0.0241 

35 174006522 24905149 -4.4141 -8 -4.3974 -0.0167 -4.5019 0.0878 

36T 174006556 204100 -7.1141 -7.4 -5.1844 -1.9297 -5.2631 -1.851 

37 174007069 9820008 -5.0641 -7.3 -5.1622 0.0981 -5.1845 0.1204 
38 174007192 73265358 -5.3753 -7.3 -5.2721 -0.1032 -5.3739 -0.0014 

39 174007450 73265409 -6.8141 -6.1 -4.9292 -1.8849 -4.8406 -1.9735 

40 174007463 14957 -7.2641 -6.7 -7.2856 0.0215 -7.1849 -0.0792 

41 385219832 16095342 -5.0641 -7.4 -5.0548 -0.0093 -5.0253 -0.0388 
42T 385219833 7056470 -4.6075 -6.8 -4.1751 -0.4324 -4.2826 -0.3249 

43 385219837 16667711 -5.9141 -6.3 -5.9619 0.0478 -5.9013 -0.0128 

44T 385219838 65452 -5.8029 -6.9 -5.3904 -0.4125 -5.5004 -0.3025 

REFERENCE/ STANDARD DRUGS 
1 Ribavirin 37542  -5.7 

 

2 Ruxolitinib 25126798  -6.2 

3 Lopinavir 92727  -6.8 

4 Ritonavir_ 392622  -6 

5 
Azithromyci

n 
447043  -7.4 

TTest set, oOutliers, ffdselCOMFA-FFD, and uveplsCOMFA-UVEPLS. 

 
Based on the FFD procedure, the CoMFA-FFD 
model results have good coefficients of 
determination of Q2

(LOO) of 0.6439, Q2
(LTO) of 

0.5567, and Q2
(LMO) of 0.55 of the cross-

validation predictions, respectively. The partial 
least square (PLS) regression gave a non-cross-
validated relationship coefficient (R2) of 0.9876 
with an extremely low standard error estimate 
(SEE) of 0.1006 and an F-test worth of 
382.7035. The CoMFA-FFD model utilizing 
compound 35 as a kind of perspective 
construction was converted into shape guides 
(contour maps) of both steric and electrostatic 
impacts for inhibitors of the Glycoprotein (GPC) 

of LASV (see Figures 1 and 2, separately). The 
steric contributed 72.21% (Figure 1(A and B)), 
and electrostatic contribute 27.29% (Figure 
1(C and D)), respectively. 

The steric field and electrostatic interaction are 
addressed by red and blue forms in which blue 
shapes demonstrate districts where the 
massive gathering would be great while the red 
forms address areas where the cumbersome 
(i.e., steric bulky groups) gathering would 
diminish the activity. As presented in Figure 
1A, the steric interaction, the red contour map 
contributes 70.73% indicating less 
cumbersome gatherings at this position would 
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increase the effectiveness while in Figure 1B, 
the blue contour map contributes 29.27% 
which suggests that cumbersome gatherings at 
that region would increase the effectiveness of 
the compounds. The electrostatic contour map 
is shown in Figure 1(C and D), the red region 
which represents 48.91% of the contour map 
indicates that the presence of the electron-
donating group would increase the bioactivity 
remarkably. Electron-withdrawing groups 
(blue contour, Figure 1D) would increase the 
bioactivity. 

The CoMFA-UVEPLS model uses compound 41 
as a reference structure (Figure 2A to 2D), for 
inhibitors of the Glycoprotein (GPC) of LASV. 
The steric contributed 65.51% (Figure 2A and 
2B), and electrostatic contribute 34.49% 
(Figure 2C and 2D), respectively. The partial 
least square (PLS) regression gave a non-cross-
validated correlation coefficient (R2) of 0.9857 
with a very low standard error estimate (SEE) 
of 0.1083 and an F-test value of 329.7039 were 
obtained, where the SDEP of 0.6010 and 

coefficient of determination (leave one out, 
leave two, and leave many out) are 0.5580, 
0.5429, and 0.4683, respectively. The CoMFA-
UVEPLS results show that 3D-QSAR models are 
trustworthy and can reliably estimate binding 
affinities of novel derivatives. Red contours 
(78.19 percent) indicate where bulky groups 
decrease activity, whereas blue contour areas 
(21.81 percent) indicate where bulky groups 
increase inhibitory activity in the CoMFA-
UVEPLS steric interaction, as illustrated in 
Figure 2(A and B), respectively. The red and 
blue contours in the electrostatic interaction 
reflect the negative (unfavorable) and positive 
(favorable) areas, respectively. The red contour 
map accounts for 46.18 percent of the total, 
while the blue contour accounts for 53.82 
percent. As a result, an electronegative 
molecular fragment near a blue area would not 
boost the chemical bioactivity, whereas an 
electropositive would. The red contour, which 
is an electronegative fragment, would be 
beneficial to the compound's bioactivity. 

      
 
 
 
 
 
 
 
 
 
 
 
 
 
        

 
 
 
 
 
 
 
 
 
Figure 1. Map of the steric contours red and blue contours illustrate places where bulky groups increase or 
reduce activity in CoMFA-FFD (A and B). Graph of electrostatic contours red and blue contours illustrate places 
where electron-donating or electron-withdrawing groups increase potency in CoMFA-FFD (C and D)

(A) (B) 

(C) (D) 
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Figure 2. Steric (A and B) CoMFA-UVEPLS contours. Bulky group activity is shown by red outlines where it 
declines and by blue areas when it increases. (C and D) Electrostatic. Negative groups tend to increase activity 
in red outlines, whereas positive groups tend to increase activity in blue areas 

 
Docking Results 

All the compounds with PUBCHEM_CID code 
were docked into the limiting site of protein, 
PDB code: 5VK2 (Pre-glycoprotein polyprotein 
GP complex), and the limiting partiality scores 
of the ligand-protein edifices are additionally 
listed in Table 2. Since the docking results are 
touchy to the scoring capacity. The one with the 
lowest docking score (compound 19, -8.00 
kcal/mol, and compound 35, -8.00 kcal/mol) is 
selected for discussion.  

The docking result shows that binding affinity 
for compound 19 and compound 35 are less 
than the reference drugs (Ampicillin, 
Ruxolitinib, Lopinavir, Ritonavir, and 
Azithromycin) as presented in Table 2. The 
docking view of compounds 19 and 35 in the 

binding site of the protein is displayed in 
Figures 3 and 4, respectively. The main 
interactions between the ligands and proteins 
are seen to be conventional hydrogen bonding, 
Van der Waals, pi-cation, pi-anion, pi-sigma, 
and pi-alkyl bonds. Compound 19 (N-(benzo[d] 
[1,3] dioxol-5-ylmethyl)-4-(benzofuro[3,2-
d]pyrimidin -4- 4yl) piperazine-1-
carbothioamide) binds to the protein site 
through four conventional H-bond formations, 
between HN of the ligand, and the O of Lys116, 
Tyr150, His141, and Tyr253, with bond 
distances of 6.22 Å, 4.61 Å, 5.41 Å, and 4.58 Å, 
respectively. The complex also formed a 
carbon-hydrogen bond between C of the ligand 
and the O of Phe147 with bond distances of 4.55 
Å. Van der Waals' interactions with the protein 
are Leu120 and Phe117. As depicted in Figure 

(A) (B) 

(C) (D) 
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3A, there is also hydrophobic interaction 
between the ligand and the Ile252 (pi-sigma), 
Tyr150, Met153, and Cys118 (alkyl, pi-alkyl, 
and pi-pi T-shaped) respectively. The 3D 
docking view of compound 19 is presented in 
Figure 3B.  
Figure 4(A and B) shows the docking view of 
compound 35 and the protein. The 
convectional hydrogen bond, carbon-hydrogen 
bond, and hydrophobic interaction (pi-sigma, 

alkyl, and pi-alkyl), respectively, were found to 
be the main collaboration between the ligand 
and the receptor (protein). Compound 35 has a 
lowing binding affinity score of 8.00 kcal/mol, 
were found to have four conventional H-bond 
with Ser121 (H---O), Leu550 (O----H), Asn240 
(HN----O), Arg551 (H----O), Glu170 (O----HN), 
Lys167 (O----H), Arg118 (O-----C), and Ile241 
(O----C). The hydrogen bonding distances are 
3.18 Å, 4.03 Å, 4.91 Å, and 6.25 Å, respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Docked interaction of compound 19 in the binding site of receptor PDB code: 5VK2 (A and B) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Docking interaction of compound 35 in the binding site of receptor PDB code: 5VK2 (A and B) 
 

(A) (B) 

(A) 
(B) 
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One carbon-hydrogen bond with Ser225 is with 
a bond distance of 4.30 Å. The complex also 
formed five Van der Waals’ interactions with 
Asn119, Asp122, Cys118, Met153, and Tyr253, 
three (3) hydrophobic interactions with Ile252 
pi-sigma bond, Tyr150, Phe147, and Ile252 
(alkyl, pi-alkyl, and pi-pi T-shaped 
interactions), respectively. 

Molecular Dynamics Simulations 

The MD simulations of the protein-ligand 
complex demonstrate the complex stability and 
also allow extra information about the binding 
mode of compound 19 and compound 35. The 
root means square deviation (RMSD), Root 
mean square fluctuation (RMSF), and solvent 
accessible surface area (SASA) plot during the 
MD simulations at 1000 trajectory are shown in 
Figures 5A-5C, respectively.  

For this MD simulation, a 10 ns the protein-
ligand complex architectures of glycoprotein 
complexes bound to compounds 19 and 35 
were subjected to unconstrained simulation. 
Despite the initial structural arrangements of 
the docked complex, the average RMSD of the 
trajectories for bound protein backbone atoms 
was relatively stable. The stable RMSD values of 
the atoms for docked compounds 19 and 35 
with the receptor are shown in Figure 5A. After 
2 ns and 4 ns, the receptors arrive at 
equilibration and sway around a normal worth, 
according to the RMSD analysis. The average 
RMSDs for compounds 19 and 35 complexes 
from 1 ns to 10 ns were 3.19 Å and 2.90 Å, 
respectively, indicating structural stability and 
less flexibility. The relative stability of both 
compounds bound to the Lassa fever receptor 
was demonstrated by these RMSD results 
throughout the simulation. This result suggests 
that both compounds undergo a negligible 
primary conformational change during the 10 
ns MD simulations. 

The time-averaged RMSF value of the 
complexes after binding with the GP complex of 
the LASV receptor was measured over the last 
10 ns of the simulation trajectory data to assess 
local protein quality. To characterize the 
mobility of individual residues, the flexibility of 
each complex was calculated by estimating the 

RMSF of compound 19 and compound 35 
generated during the simulation, as shown in 
Figure 5B. The structure of all complexes does 
not change significantly during the simulation, 
as demonstrated in the Figure. Even though 
complex 35 has a higher fluctuation than 
complex 19, all complex graphs have a similar 
shape. The highest peaks in the RMSF plot 
indicate that those residues fluctuate a lot. The 
variations of residues in chemical binding 
pockets suggest that interactions of the 
selected compounds at the receptor's active site 
may improve the stiffness of the amino acids in 
the active site. This indicates that all complexes 
keep stable along with the simulation. 

Based on the protein's solvent accessibility, the 
SASA plots show the rate of conformational 
changes. The protein-ligand complexes of 
compounds 19 and 35, the average values of 
the complexes are 11.8404718 Å2 and 
10.23441899 Å2, respectively (Figure 5C).  The 
simulated systems were watched to see how 
the receptor's overall shape changed 
throughout the simulation. The SASA plot 
demonstrated that the SASA of complex-19 (3–
6 ns) grew gradually until the equilibration 
period, and then plateaued at approximately 9 
ns. This shows that the ligand was strongly 
bound in the binding pocket after equilibration, 
rendering the pocket inaccessible to bulk 
solvent. Comparing the configuration of the 
complex after stimulation with the docking 
confirmation, as shown in Figures 3 and 4, 
compound 19 assumes a similar docking 
location with the protein but moves richer in 
the protein's binding pocket, increasing the 
binding affinity substantially. After the 
simulation, the residues that bind to compound 
19 established a typical hydrogen bond with 
Tyr253 at a distance of 5.69 nm (or Å), as 
illustrated in Figure 6A. Furthermore, at 
distances of 4.78 and 5.66, formed a series of 
carbon-hydrogen bonds with Ile144 and 
Leu142. Tyr150 (pi-pi stacked) and Leu142 (pi-
alkyl) created two hydrophobic contacts with 
the ligand. Pi stacking is a non-covalent 
interaction between aromatic rings that plays a 
key function in various biological and chemical 
processes [46].  The protein also formed a 
series of Van der Waal’s interactions with  
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Leu120, Cys118, Glu151, Ser255, Phe147, 
Asn146, Ile252, and Asp251 respectively. 
Ser121, Leu120, Tyr150, and His141 were 
identified to be involved in the creation of 
hydrogen bonds with the binding site area of 
LASV's glycoprotein during the docking 
simulation. Even though the key residues 
Ser121 and Cys118 helped form hydrogen 
bonds with the target protein at the end of the 
simulation, they further improved the protein-
ligand complex's stability, as illustrated in 
Figure 6B. 
We had a comprehensive grasp of the 
structure-activity relationship and binding 
modalities of the ligand for inhibitors of the 
glycoprotein (GPC) of LASV based on the results 
of CoMFA-FFD, CoMFA-UVEPLS, molecular 
docking, and MD simulations. The docking 

results validated the 3D-QSAR findings, which 
demonstrated the effect of each steric and 
electrostatic interaction on bioactivity. 
Molecular docking and MD simulations 
identified some critical interactions between 
the protein and the ligands at the same time. 
The MD simulations further explained 
hydrogen bond, steric “Van der Waal’s 
interactions”, and hydrophobic interactions on 
the ligands. The presence of constant hydrogen 
bonding and hydrophobic interactions between 
the protein-hit compounds 19 and 35 
complexes caused the strongest interactions. 
These computer-based drug design or in silico 
studies would give helpful data and a useful 
asset for our next plan and streamlining of new 
practical glycoprotein complex of LASV 
inhibitors.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. MDS study of glycoprotein (PDB ID: 5vk2) concerning (A) RMSD, (B) RMSF, and (C) SASA 

(A) (B) 

(C) 
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Figure 6. Molecular dynamics interactions of (A) compound 19 and (B) compound 35 with simulated protein 
structure 
 
The structural properties of a protein may be 
influenced by its binding of a ligand, and SASA 
may change as a result. A higher SASA score 
denotes an increasing protein structure. The 
SASA value ought to vary just slightly 
throughout the simulation. Surface racing v5 
was used to compute the solvent-accessible 
surface area (SASA) and other metrics in Table 
3 for both compounds [47]. The non-polar free 
energy can be calculated using the formula: 

△𝐺𝑆𝐴  = γ × SASA + 𝛽  [48], where γ = surface 
tension proportionality constant and 𝛽  = the 
free energy of nonpolar solvation for a point 
solute. The values of the constants γ and β were 
0.00542 kcalÅ2 and 0.92 kcal/mol, respectively. 
The radius of the probe sphere used to calculate 
SASA was set to 1.4 Å. 

The SASA value of compound 35 complex was 
lower than that of compound 19. The total  

(A) 

(B) 
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average SASA value implies that compound 19 
complexes may cause protein expansion, 
increasing the protein's solvent-accessible 
surface (Table 3). The electrostatic, Van der 
Waals and the non-polar energies of 
compounds 19 and 35 with glycoprotein (GPC) 
of LASV were presented in Table 4. The Van der 
Waals energy contributed significantly more to 
the binding energy than other energies, 

implying that Van der Waals energy interaction 
was important in the complex system. The 
internal energy was unfavorable for ligand 
binding, as indicated by the positive values in 
the case of complex 19. This finding is 
consistent with the results of 3D-QSAR 
(CoMFA), docking, and MD simulations, which 
revealed that compound 35 has more 
interactions with the hydrophobic binding site. 

 
Table 3. The solvent accessible surface area of the simulated complexes 

The surface area of complex 19 
Number of non-HOH, non-H atoms=1663 

Probe radius=1.40 
TOTAL ASA=11719.58 
TOTAL MSA=10265.85 

Polar ASA=6586.11     Non-polar ASA=5133.47 
Polar MSA=4700.38     Non-polar MSA=5565.48 

Total backbone ASA=1962.55 
Total backbone MSA=2543.22 
Polar backbone ASA=1345.28 

Non-polar backbone ASA=617.27 
Polar backbone MSA=1552.59 

Non-polar backbone MSA=990.63 
Polar side chain ASA=5240.82 

Non-polar side chain ASA=4516.20 
Polar side chain MSA=3147.78 

Non-polar side chain MSA=4574.85 
+charge ASA=551.00   -charge ASA=839.28 
+charge MSA=280.54   -charge MSA=376.18 

The surface area of complex 35 
Number of non-HOH, non-H atoms=1016 

Probe radius=1.40 
TOTAL ASA=9930.23 
TOTAL MSA=8295.32 

Polar ASA=5076.53     Non-polar ASA=4853.70 
Polar MSA=3578.53     Non-polar MSA=4716.78 

Total backbone ASA=1613.86 
Total backbone MSA=2072.09 
Polar backbone ASA=1148.13 

Non-polar backbone ASA=465.74 
Polar backbone MSA=1317.12 

Non-polar backbone MSA=754.98 
Polar side chain ASA=3928.40 

Non-polar side chain ASA=4387.97 
Polar side chain MSA=2261.42 

Non-polar side chain MSA=3961.80 
+charge ASA=280.93   -charge ASA=551.69 
+charge MSA=129.17   -charge MSA=243.64 

MSA: Molecular Surface Area and ASA: Accessible Surface Area 

 
 

Table 4. The computed free binding energies of the simulated compounds (kcal/mol) 
Parameters Complex 19 Complex 35 

Complex Protein Ligand Complex Protein Ligand 
BOND 269.5412 264.459 6.6014 106.9596 96.7997 11.9063 
ANGLE 562.1115 545.4876 18.1604 315.3269 285.0179 30.3831 
DIHED 1,719.5106 1,654.8131 62.0238 1,101.9559 1,013.8331 89.7938 
IMPRP 32.9232 32.1377 0.0115 15.3392 15.4766 0.0064 
ELECT -3,361.1568 -3,391.9027 33.9501 -1,656.3265 -1,379.6462 -266.1233 
VDW -700.7306 -690.0145 21.3692 -273.1361 -290.029 39.2074 

∆E(internal) 0.392 -3.6354 
∆E(electrostatic) + deltaG(sol) -3.2041 -10.5569 

∆E(VDW) -32.0852 -22.3145 
∆G binding -34.8974  +/- 0.4987 (kcal/mol) -36.5068  +/- 0.8256 (kcal/mol) 
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The calculated binding free energies 
(∆𝐺 𝑏𝑖𝑛𝑑𝑖𝑛𝑔) of complex 19 and complex 35 
from the last 100 frames were -34.8974  +/- 
0.4987 (kcal/mol) and  -36.5068  +/- 0.8256 
(kcal/mol), respectively (Table 4). The 
outcome demonstrates that the compounds 
remained in bound form for the simulation. 
When it comes to binding energy values, the 
binding energy value with the lowest negative 
value is the most potent [44]. Because more 
free energy is released as a result of this 
binding, the receptor and ligand make more 
contacts. As a result, unlike ligands with lower 
negative values, the intended target is more 
accessible. By comparing the ligands' binding 
energies (complex 19 and complex 35), we may 
interpret the lowest experimental Fit LogAC50 
value for compound 19 (-5.0529) compared to 
the experimental Fit LogAC50 of compound 35 
(-4.4141) using the receptor produced by the 
molecular docking procedure. Therefore, 
compound 19 and compound 35 have the 
lowest binding affinity (-8 kcal/mol) compared 
to the reference drugs. As a result, compound 
19's low Fit LogAC50 value reflects the 
molecule's high therapeutic activity. We should 
also mention that the binding affinity values of 

compound 14 are quite high (Fit_LogAC50 
value: -7.0141) (binding affinity: -7.6 kcal/mol) 
and compound 17 (-7.9 kcal/mol) 
(Fit_LogAC50 value: -7.7641) were better than 
the binding affinity of the reference compounds 
(Table 2). Compounds 33, 36, and 41 with low 
Fit_LogAC50 values of -4.6641, -7.1141, and -
5.0641, respectively have the same binding 
affinity value as the reference drug 
(Azithromycin) (Table 2). The binding score 
compound (19 and 35), confirms that these 
compounds have higher biological activity in 
blocking the protein's enzymatic activity when 
compared to reference molecules. 

We hypothesized that compound 19 would be 
the best in terms of calculating binding free 
energy for glycoproteins (GPC) and could 
exhibit higher potency than the references 
compounds, while compound 35 may have the 
potential to become specific glycoprotein (GPC) 
inhibitors based on the lines of evidence 
regarding delta G binding of surrounding atoms 
and SASA. These two selected hit-lead drugs 
discovered in this study could be interesting 
candidates for further GPC-targeting medicinal 
research and development. 

 
Table 5. Contact frequency (%) analysis of 5VK2-19 and 5VK2-35 simulated complex 

Find interactions: Complex-19 Find interactions Complex-35 

Residue  Fraction Residue  Fraction 

PROA-CYS-118  47.35% PROA-CYS-118  69.80% 

PROA-LEU-120  24.78% PROA-ASN-119  0.50% 

PROA-HSD-141  99.56% PROA-LEU-120  96.20% 

PROA-LEU-142  100.00% PROA-SER-121  65.20% 

PROA-SER-143  10.62% PROA-HSD-124  63.30% 

PROA-ILE-144  99.56% PROA-SER-138  0.50% 

PROA-ASN-146  2.65% PROA-HSD-141  99.70% 

PROA-PHE-147  92.92% PROA-LEU-142  61.30% 

PROA-TYR-150  97.35% PROA-ILE-144  5.10% 

PROA-GLU-151  11.95% PROA-PHE-147  98.20% 

PROA-ASP-251  67.70% PROA-ASN-148  75.90% 

PROA-ILE-252  98.23% PROA-GLN-149  59.10% 

PROA-TYR-253  100.00% PROA-TYR-150  95.60% 

PROA-SER-255  15.93% PROA-MET-153  68.70% 
 

PROA-TYR-166  2.10% 
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To further analyze the binding between 5VK2 
and the compounds during the 10 ns MD 
simulation, the contactFreq.tcl module in VMD 
(cut-off of 4) was used. The proportion of the 
two ligands that were put to the test, 
compounds 19 and 35 that had contact 
frequency (CF) with the binding residues of 
5VK2 was reported. The results indicate that 
some of the residues are involved in ongoing 
interactions with the compounds (Table 5). 
The following amino acid residues showed 
higher CF values in the simulation study: 
HSD141, LEU142, ILE144, PHE147, TYR150, 
ASP251, ILE252, and TYR253 for complex 19, 
and for complex 35, the CF values with the 
greatest percentage scores are CYS118, 
LEU120, SER121, HSD124, LEU142, PHE147, 
ASN148, GLN149, TYR150, and MET153, 
respectively. The most common amino acids in 
both complexes are CYS118, LEU120, LEU142, 
ILE144, PHE147, and TYR150, as presented in 
Table 5. 

Conclusion 

This study reviewed the importance of CoMFA-
FFD, CoMFA-UVEPLS, molecular docking, and 
MD simulations on drug discovery and design 
for inhibitors of the glycoprotein (GPC) of Lassa 
(LASV) Arenavirus. Our present studies have 
established that the structural features and 
binding mechanism of compounds 19 and 35 
through Molecular Interaction Fields (MIFs) 
studies are quite reliable and significant. The 
CoMFA-FFD and CoMFA-UVEPLS studies 
indicate that the steric and electrostatic 
interaction plays an important role in 
determining the potency of the compounds. 
Docking on the same simulated A-chain of 
protein reveals that the ligand is bonded to 
conventional hydrogen bonds, carbon-
hydrogen bonds, and hydrophobic interaction. 
Moreover, the ligand-protein complex was used 
in MD modeling to realize the conformation 
changes of the complex. The root mean square 
deviation (RMSD), root mean square 
fluctuation (RMSF), and solvent accessible 
surface area (SASA) plots demonstrated that 
the complex was stable, with the ligand-protein 
complex's shape changing minimally from the 

docking conformation. From these studies, we 
have added valuable information into the 
factors governing the potency of the inhibitors 
for the glycoprotein (GPC), of LASV. 
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