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A B S T R A C T 
 

One of the main methods for the synthesis of amorphous and nanostructured 
carbon is the mechanical milling of graphite. However, calculation and 
anticipation of the amorphous phase during the mechanical milling of graphite still 
is a major challenge due to a lot of important parameters. The main aim of this 
study is to mass-produce amorphous carbon and predict the crystallite size of 
graphite. For this purpose, ball-milling of graphite powder was carried out at 
different times of milling. The destruction of crystal structure and changes in 
phases were evaluated using X-ray diffraction (XRD), transmission electron 
microscope (TEM), atomic force microscopy (AFM), scanning electron microscope 
(SEM), and Zeta Seizer analysis. The results of the Material Analysis Using 
Diffraction (MAUD) for the obtained XRD patterns revealed that 91% and 93% of 
the unmilled graphite were converted to amorphous carbon at 250 and 330 h of 
ball-milling, respectively. To predict the crystallite size of carbon during the high 
energy ball-milling, the effective variables in the ball-milling process along with 
the initial crystallite size of carbon were determined as the input of the artificial 
neural network (ANN). Moreover, the final crystallite size of carbon was 
considered as the output of the network. The designed network with a root mean 
square error (RMSE) of 4% was able to predict the crystallite size of carbon during 
the process. Finally, by comparing the experimental results and the designed 
model, it was demonstrated that the predicted results were very close to the 
experimental outcomes. Accordingly, the presented model can be used for 
predicting the crystallite size of carbon during the mechanical milling of graphite. 

  

Introduction 

morphous carbon (AC) and 
nanostructured carbon owing to sp2 
hybrid orbital components, high 
surface area, disorder and activated 

structure; have various properties such as high 
abrasion resistance, high porosity, and other 
mechanical, thermal and optical properties [1,2]. 
Likewise, some of the most important 
applications of amorphous and nanostructured 
carbon including use in solar cells [3], hydrogen 

A 
*Corresponding Author: Seyed Oveis Mirabootalebi (oveis@eng.uk.ac.ir) 

76 

http://dx.doi.org/10.22034/jaoc.2021.288020.1021
https://orcid.org/0000-0001-5793-6238
https://orcid.org/0000-0003-4724-374X
https://creativecommons.org/licenses/by/4.0/


 

     

78 

2020, Volume 1, Number 2 

storage materials [4], field-emitting displays [5], 
fabrication of carbon nanotubes [6], and 
buckypaper [7].  Various methods have been 
utilized to modify the crystalline structure of 
carbon; however, converting crystalline to the 
amorphous and  nanostructured forms of carbon 
is one of the most common ways to produce AC. 
These techniques include CVD and laser-assisted 
CVD [8,9], laser ablation [10], arc discharge [11], 
flame [12], electrolysis [13], and milling of 
graphite [14]. Nevertheless, some key factors in 
mechanical activation (MA) such as the high 
potential for mass production, economic and 
simple process, make graphite milling one of the 
main approaches for the synthesis of amorphous 
and nanostructured carbon [15, 16].  

Ball-milling of graphite always accompanies by 
a continuous decrease in the crystallite size of 
carbon. Therefore, the ordered structure of 
graphite converts to the nanostructured and 
amorphous phase by increasing the milling time. 
Determining the exact amount of nanostructure 
and amorphous phase and also predicting the 
crystallite size of carbon during ball-milling can 
lead to optimal usage of the process for a wide 
range of applications. Despite extensive 
research on the synthesis and characterization 
of amorphous carbon in the MA [15,17-19], no 
study was performed to specify the percentage 
of the produced nanostructured and amorphous 
phases. In addition, there are a lot of major 
factors in the ball-milling procedure. Hence, 
predicting the properties of the product such as 
the crystal size and the amount of amorphous 
phase is very difficult. 

Numerous machine-learning models have been 
developed for optimization of the process and 
prediction of the major variables in materials 
science and solid-state physics. For example, 
Artificial Neural Network [20], Taguchi [21], and 
Genetic Algorithm [22]. Among these ways, the 
ANN is one of the strong computing systems for 
approaching different datasets to reach a 
solution [23]. This modeling technique is based 
on learning and subsequently the prediction of 
output responses [24]. ANN has been 
extensively employed in MA and due to the 
diverse major parameters in the milling process, 
it can estimate the desired outputs [25-27].   

In this work, the process of transformation of 
the ordered phase into the amorphous and 
nanostructured phase during high-energy ball-
milling was investigated by applying numerous 
analyses and state-of-the-art methods 
(Rietveld/MAUD). Therefore, the quantity of the 
produced AC at different times of ball-milling 
was estimated via analyzing the results of XRD 
patterns. In order to increase the produced AC, 
the MA was optimized by using two types of balls 
and increasing the milling time. Moreover, an 
artificial neural network was designed to predict 
the ultimate size of carbon crystallite during 
graphite milling by applying the effective 
variables. 

Experimental  

Materials 

The high-purity flake of graphite (15 μm) was 
chosen as the precursor. The milling process was 
induced in a planetary ball mill with 10 gr of the 
graphite and 5 steel balls of 15 mm diameter and 
32 steel balls of 10 mm diameter in the argon 
atmosphere. The ball-to-powder weight ratio 
was kept at 20:1 and the vial speed was 300 rpm 
and mechanical activation was performed at 
different times of ball-milling. Finally, the 
obtained amorphous carbon from the ball-
milling process was subjected to heat treatment 
at 1400 ˚C for 3 h. 

Characterization 

The structural change in obtained samples was 
assessed using X-ray diffractometer (Philips 
X'Pert, Cu-Kα, λ=0/1542 nm). Atomic force 
microscope (Autoprobe Cp, contact mode, 1 Hz 
rate of scan), transmission electron microscopy 
(LEO912-AB operated at 100 kV), and field 
emission scanning electron microscopy (Mira 3-
XMU) were used to study the structure of the 
activated carbon. 

Results and Discussion 

The X-ray diffraction patterns of graphite 
powder for various activation times are shown 
in Figure. 1. Unmilled graphite has a sharp peak 
at 26˚-27˚ and a broad peak at 43˚-46˚. These 
peaks become broader and shorter by increasing 
the milling time because of the enhancement of 
the surface area of particles, the development of 
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dislocations, and the creation of sub-grain 
boundaries.  

The amorphization mechanism is not 
completely clear. It seems when crystallite size 
reaches a critical value, the conversion of the 
crystalline to amorphous phase occurs. 
Thermodynamically, a continuous decrease in 
the crystallite size, growing crystallite defects, 
and the lattice expansion rise the Gibbs free 
energy of the system to a higher level than the 
amorphous phase, and as a result, an amorphous 
structure will be formed [28]. If the grain size of 
carbon was reduced to the ultimate value of 
about 3 nm [14], the crystal structure of graphite 
changed to the amorphous structure due to the 
fracturing basal planes and destruction of 
graphite crystalline structure [29].   

As seen in Figure. 1, the percentage of the 
amorphous phase, crystallite size, micro-strains, 

the average distance between the graphene 
planes (d002) were calculated using 
Rietveld/MAUD (Table 1). The crystallite size of 
carbon was decreased by increasing the milling 
time. Conversely, d002, the micro-strain, and the 
amount of amorphous phase were increased. 
97% of the ordered carbon phase converted to 
the amorphous phase after 330 h of ball-milling. 
Similar to the changes of the XRD pattern, the 
crystallite size is decreased by increasing the 
activation time and finally is transferred to a 
completely disordered and metastable phase. It 
seems amorphization of carbon is similar to 
amorphization of ordered alloys according to 
the following sequence [28, 30]:   

Ordered phase  disordered phase  
nanocrystalline phase  amorphous phase

 
Figure 1. XRD pattern of ball-milled graphite at different time of milling. 

Table 1. Characteristics of the crystal structure of graphite during the ball-milling process. 
 

Previous studies [33-37,41] have reported 
various times for the production of amorphous 
carbon due to differences in the type of ball mill, 
ball to powder weight ratio, the milling speed, 
and other important items. In this research, the 
normal milling condition was used to prevent 

the fabrication of crumpled graphite layers 
which are produced during the MA. After 180 h 
of milling, no significant changes are observed in 
the X-ray diffraction pattern. There is some 
evidence to suggest that after a long time of 
milling of graphite (170-1000 h), there was no 

(Å) 002d Strain 
Size of 

Crystallite 
(Å) 

Percentage of 
Amorphous 

phase 

Time of 

Milling (h) 

0.0332 0.00613 39 0 0 

0.0337 0.0175 9.6 22 50 

0.0337 0.0219 5.8 69 100 

0.03376 0.0223 5.09 72 180 

0.0339 0.02507 0.13 93 330 
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change in the XRD pattern and crystallite size 
[19,31]. This is the result of a balance between 
dislocation motion and recovery and 
recrystallization processes, which cross slips do 
not lead to the reduction of grain size.  

AFM image of the milled graphite after the 
annealing step is demonstrated in Figure 2 After 
the heat treatment, the morphology of the milled 

graphite converted to the plates of graphene and 
due to recrystallization, carbon particles are re-
connected to each other. Indeed, the stress-
relieving and reduction of crystalline defects led 
to minor changes in dimensions and the 
structure of AC. Consequently, the crystalline 
structure of nanostructured plates of graphene 
is formed. However, it seems that 
recrystallization does not occur in all powders.

 
Figure 2. AFM image of ball-milled graphite after annealing at 1400 ˚C. 

Figure 3 depicts the TEM and FE-SEM images of 
330 h of ball-milled graphite after the heat 
treatment. A high percentage of graphite 
particles have a smaller size than 100 nm after 
the annealing step which reveals the suitable 
performance of the annealing stage. Owing to 
the high thermal stability of nanostructured 
graphite, the annealing of milled graphite did not 

lead to significant changes in the size of the 
graphite. Therefore, the non-stress 
nanostructured carbon with appropriate 
dimensional changes of particles is prepared by 
annealing of the milled graphite. It is also worth 
noting that there are a lot of particles smaller 
than 50 nm as seen from the arrows of the TEM 
figure.

 
Figure 3. TEM and SEM images of the ball-milled graphite after heat treatment at 1400˚ C. Arrows 
show particles smaller than 50 nm. 

  

Journal of 

Chemical Reviews 



 

     

2020, Volume 1, Number 2 

Modeling Procedure 

Artificial neural network theory is the parallel 
network model base on the biological learning 
process. This network including interconnected 
units known as neurons or nods. Neurons are 
the smallest computing elements and they are 
interconnected together by signals. These 
signals are transmitted several times from input 
to output and aggregate into layers [32]. The 
artificial network consists of three main layers 
including input, output, and hidden layers. The 
neural network learns by the training process 
including changing weights, adjusting the 
neuron’s bias, and normalization of the output 
by activation functions. This cycle continues 
until the model approaches the requested 
output and achieves an acceptable error [20]. 

 The relation of nods can be expressed by 
Equation 1: 

(1)                                             𝑥 = 𝑓(∑ 𝑤𝑖𝑥 + 𝑏) 
𝑝
𝑖=1  

Where f is the activation function, the output x 
is created by the node in the layer, p is the 
number of factors in the layer, wix is the weight, 
and b is the bias of the current neuron. 

Collecting Experimental Data 

Some of the most important factors in the MA 
which have an important effect on the final 
products are selected as the effective factors. 
These variables including milling time, milling 
speed, and ball-to-powder weight ratio. To 
predict the size of the crystallite size during ball-
milling of graphite, required data was extracted 
from the valid international papers [15, 17-18, 
33-37] and was collected in table 2. 

Table. 2. Data sets of ball-milled graphite which is collected from previous works [15, 17-18, 33-37]. 
 

No. BPR* 
Vial speed 

(rpm) 

Milling time 

(h) 

Initial size of 

the crystallite 

(nm) 

 

Final size 

of the crystallite 

(nm) 
 

References 
 

1 55 200 1 54.3 13.3 [17] 

2 55 200 2 54.3 6.4 [17] 

3 55 200 3 54.3 3.3 [17] 

4 55 200 4 54.3 2.7 [17] 

5 55 200 5 54.3 2.4 [17] 

6 10 300 0.5 21 15.5 [15] 

7 10 300 1 21 8.5 [15] 

8 10 300 2 21 6 [15] 
9 10 300 4 21 3.2 [15] 
10 10 300 8 21 2.3 [15] 
11 40 450 60 15.8 10.1 [33] 

12 40 450 80 15.8 9.3 [33] 
13 40 450 100 15.8 8.7 [33] 
14 40 450 60 15.4 12.3 [33] 
15 40 450 80 15.4 12.9 [33] 
16 40 450 100 15.4 11.3 [33] 
17 20 300 3 100 42.5 [34] 

18 20 300 5 100 33 [34] 
19 20 300 10 100 21 [34] 
20 23 420 36 30 3.3 [18] 

21 10 400 150 35 13 [35] 

22 20 700 5 31.1 30.1 [36] 

23 20 700 10 31.1 29.8 [36] 

24 20 700 30 31.1 27.4 [36] 
25 20 700 50 31.1 25.4 [36] 
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          *BPR: Ball to Powder Ratio

The atmosphere of the ball-milling of graphite 
has a different effect on the destruction rate of 
the crystalline structure [38]. For example, this 
rate in argon is faster than air and oxygen since 
saturated carbon-oxygen bonds decrease the 
velocity of the destruction process [38, 15,39]. 
Moreover, mechanical milling of graphite in a 
wet environment has a lower effect on the 
crystalline structure of graphite and produces a 
higher number of contaminations than dry 
methods [40,41]. Therefore, the dry method and 
argon were chosen as the reaction atmosphere 
for the experimental process. Similarly, the 
collected data were selected only from the 
mention condition for more accuracy. To obtain 
the crystallite size, the Williamson-Hall law 
relation was used, according to Equation 2 [42]: 

 (2)                                    𝛽𝑐𝑜𝑠𝜃 = 2 𝜀𝑠𝑖𝑛𝜃 + 0.9(
𝜆 

𝐷
) 

Where D is the crystallite size, β is the full width 
at half maximum (FWHM), θ is the brag angle, λ 
is the wavelength, and ε is the microstrain. 

Model setup 

ANN Architecture 

29 and 11 data sets were chosen randomly for 
training and verification of the model, 
respectively. Feed-forward back propagation 

(BP) was used for the learning module. BP 
network has a high ability to achieve desired 
outputs and has been widely used in the ball-
milling process to predict effective factors in 
similar studies [43-45].  

In the BP algorithm, there are two stages in 
each round. First, the determination of a random 
value for all weight parameters (feed-forward). 
Then, changing the weights to achieve an output 
with less error and closer to the values (back-
propagation). This process is repeated until the 
output of the network for all of the training data 
reaches the closest actual value [46].  

The trial-and-error method was performed to 
specify the number of neurons in the hidden 
layers during the training process.  

The designed network including one input and 
output layer, and two hidden layers containing 
16 and 10 nodes in the first and second layers. 
The input factors are the initial size of the 
graphite crystallite, milling speed, ball to 
powder weight ratio, time of milling, and the 
final size of the crystallite considered as the 
output. The schematic diagram of the ANN is 
shown in Figure 4. 

 

 

 

 

 

No. BPR* 
Vial speed 

(rpm) 

Milling time 

(h) 

Initial size of 

the crystallite 

(nm) 

 

Final size 

of the crystallite 

(nm) 

 

References 

 

26 20 700 60 31.1 24.6 [36] 
27 20 700 80 31.1 22.1 [36] 
28 20 700 90 31.1 20.1 [36] 
29 20 700 100 31.1 18.5 [36] 
30 20 700 120 31.1 13.9 [36] 
31 20 700 130 31.1 11.2 [36] 
32 20 700 140 31.1 8.5 [36] 
33 20 700 150 31.1 5.2 [36] 
34 20 700 160 31.1 4.9 [36] 
35 20 700 170 31.1 4.8 [36] 
36 20 700 180 31.1 4.7 [36] 
37 40 720 4 12 3.5 [37] 

38 40 720 8 12 2.3 [37] 
39 40 720 16 12 1.2 [37] 
40 40 720 40 12 1.1 [37] 
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Figure 4. Architecture of the designed ANN. 

The trained network and the finite element 
method were used for the calculation of the 
regression. MATLAB version R2014a due to its 
user-friendly interface and the Levenberg–
Marquardt algorithm owing to fast learning 
capability [47], were used to write and train the 
network, respectively.  

In addition, the log-sigmoid transfer function, 
which is S-shaped and non-linear, was employed 
as an activation function, according to Eq. 3 and 
Figure. 5: 

(3)                                                              𝑓(𝑥) =
1

1+𝑒−𝑥

 
Figure 5. The log-sigmoid function curve 

 

The log-sigmoid function has a high potential 
for learning the complex system and was used 
broadly in similar studies [27, 48].  

All of the data sets have been homogenized and 
normalized (between 0.1 to 0.9) based on Eq. 4: 

(4)                     N = 0.8 (
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
) + 0.1  

 Where N is the normalized data, xmin and xmax 
are the minimum and maximum values of the 
variables, respectively. 

Furthermore, the network's RMSE was 
computed by Eq. 5:   

(5)     RMSE =
1

N
∑ (

|Actul value−Predicted value|

Actul value
× 100)N

1    

 𝐴𝑁𝑁 𝑅𝑒𝑠𝑢𝑙𝑡𝑠  

For the purpose of test the accuracy of the 
trained model, regression analysis was applied. 
Certainly, the closer the regression value to 1 
shows the better performance of the network. 
Figure. 6 provides information about the result 
of the regression analysis which the total 
regression is 0.99576. A comparison between 
actual and predicted values was conducted for 
verification of the created network. According to 
equation 5, the network's error was measured 
by 4%.
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Figure 6. Regression analysis of the ANN model for prediction of carbon crystallite size. 

 

Model verification 

Figure 7 shows the experimental and predicted 
values for the crystallite size of carbon. It is 
completely noticeable that the created network 
with high precision predicts the actual values of 
the crystallite size. Consequently, it can be 

anticipated that the modeled network can 
predict other similar experiments with such a 
high approximation and dependability. 
Furthermore, the present network leads to 
better risk assessment of lab-based work 
regarding a lot of parameters in MA and the 
difficulty of setting them up. 

 
 
 
 
 
 
 
 
 
 
 

Figure 7. Comparison between experimental outcomes and predicted measurements.

Conclusion 

In this research study, by optimizing the 
effective parameters in the ball-milling of 
graphite, a high percentage of the crystalline 
phase of carbon in the graphite was converted to 
a nanostructured, and eventually, the 
amorphous phase. The results of the 
quantitative phase analysis (Rietveld/MAUD) 
based on the obtained XRD patterns depicted 
that after 250 and 330 h of milling, near 91% and 
93% of the graphite structure is changed to 
amorphous carbon, respectively. Furthermore, a 
feed-forward artificial neural network with 2 
hidden layers consist of 16 and 10 neurons was 

used to predict the final crystallite size of carbon. 
The low RMSE and results of verification 
revealed that the designed network with high 
accuracy can predict the crystallite size of 
carbon during the mechanical activation of 
graphite. 
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