Document Type : Original Article

Author

PG Department of Chemistry, Mahatma Gandhi Vidyamandir’s Arts, Science and Commerce College, Manmad, Taluka-Nandgaon, District- Nashik, India-423104.

Abstract

The rising concerns about the Biginelli reaction are mainly attributable to the therapeutic and pharmacological features of Biginelli adducts, especially dihydropyrimidinones (DHPMs). The DFT framework could be used to explore molecular properties such as molecular structures, molecular energies, ionisation potentials, dipole moments, and electronic parameters. It also contributes to the correlative analysis of theoretical and experimental findings through providing valuable perspectives. Using density functional theory (DFT) at the 6-311++G(d,p) basis set, twelve Biginelli adducts were focused to ascertain various structural and chemical parameters. The important structural parameters such as optimized molecular structures, frontier molecular orbital (FMO) analysis, and molecular electrostatic potential analysis were addressed in the present report. In addition, different quantum chemical parameters have been calculated to gain a deeper comprehension of the molecules' synthetic reactivity. The FMO and quantum chemical exploration revealed that BA7 molecule has a lower HOMO-LUMO energy gap, indicating that charge transfer interactions are inevitable within the molecule. The BA7 molecule was also found to have a higher global softness value than the other derivatives. The absolute hardness of the BA6 molecule, on the other hand, is higher. With a value of 2.3228 eV, the BA3 molecule was revealed to have the highest charge transfer.

Graphical Abstract

Computational Chemistry Approach for the Investigation of Structural, Electronic, Chemical and Quantum Chemical Facets of Twelve Biginelli Adducts

Keywords

Main Subjects

 

 

 

================================================================

Copyright © 2021 by SPC (Sami Publishing Company) + is an open access article distributed under the Creative Commons Attribution License (CC BY)  license  (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[1] a) C.O. Kappe, Eur. J. Med. Chem.2000, 35, 1043-1052. [crossref], [Google Scholar] , [Publisher ]
b) Â. de Fátima, T.C. Braga, L.S. Neto, B.S. Terra, B.G.F. Oliveira, D.L. da Silva, L.V. Modolo,  J. Adv. Res.2015, 6, 363-373. [crossref], [Google Scholar] , [Publisher ]
[2] a) K. Singh, T. Kaur, MedChemComm, 2016, 7, 749-768. [Crossref], [Google Scholar], [Publisher]  b) U. Rashid, R. Sultana, N. Shaheen, S.F. Hassan, F. Yaqoob, M.J. Ahmad, F. Iftikhar,  N. Sultana,  S. Asghar, M. Yasinzai, F.L. Ansari, Eur. J. Med. Chem., 2016, 115, 230-244. [Crossref], [Google Scholar], [Publisher] c) A.R. Trivedi, V.R. Bhuva, B.H. Dholariya, D.K. Dodiya, V.B. Kataria, V.H. Shah, Bioorg. Med. Chem. Lett., 2010, 20, 6100-6102. [Crossref], [Google Scholar], [Publisher]   d) A. de Vasconcelos, P.S. Oliveira, M. Ritter, R.A. Freitag, R.L. Romano, F.H. Quina, L. Pizzuti, C.M. Pereira, F.M. Stefanello, A.G. Barschak, J. Biochem. Mol. ToxicoL. 2012, 26, 155-161. [Crossref], [Google Scholar], [Publisher] e) K.L. Dhumaskar, S.N. Meena, S.C. Ghadi, S.G. Tilve, Bioorg. Med. Chem, Lett., 2014, 24, 2897-2899. [Crossref], [Google Scholar], [Publisher]  f) F.S. De Oliveira, P.M. De Oliveira, L.M. Farias, R.C. Brinkerhoff, R.C.M. Sobrinho, T.M. Treptow, C.R.M. D'Oca,  M.A. Marinho, M.A. Hort, A.P. Horn, D. Russowsky, MedChemComm, 2018, 9, 1282-1288. [Crossref], [Google Scholar], [Publisher] g) C.M. Wright, R.J. Chovatiya, N.E. Jameson, D.M. Turner, G. Zhu, S. Werner, D.M. Huryn, J.M. Pipas, B.W. Day, P. Wipf, J.L. Brodsky,  Bioorg. Med. Chem., 2008, 16, 3291-3301. [Crossref], [Google Scholar], [Publisher]  h) B.P. Kumar, G. Sankar, R.N. Baig, S. Chandrashekaran, Eur. J. Med. Chem., 2009, 44, 4192-4198. [Crossref], [Google Scholar], [Publisher] i) K.S. Atwal, G.C. Rovnyak, J. Schwartz, S. Moreland, A. Hedberg, J.Z. Gougoutas, M.F. Malley, D.M., Floyd, J. Med. Chem., 1990, 33, 1510-1515. [Crossref], [Google Scholar], [Publisher]  j) P. Sharma, N. Rane, V. K. Gurram, Bioorg. Med. Chem. Lett., 2004, 14, 4185-4190. [Crossref], [Google Scholar], [Publisher]  k) S.N. Mokale, S.S. Shinde, R.D. Elgire, J.N. Sangshetti, D.B. Shinde, Bioorg. Med. Chem. Lett., 2010, 20, 4424-4426. [Crossref], [Google Scholar], [Publisher]    l) A.M. Farghaly, O.M. AboulWafa, Y.A. Elshaier, W.A. Badawi, H.H. Haridy, H.A. Mubarak, Med. Chem, Res., 2019, 28, 360-379. [Crossref], [Google Scholar], [Publisher]  m) V.A. Adole, World J. Pharm. Res., 2020, 9, 1067-1091. [Crossref], [Google Scholar], [Publisher]
[3] V.A. Adole, R.H. Waghchaure, S.S. Pathade, M.R. Patil, T.B. Pawar, B.S. Jagdale, Mol. Simul., 2020, 46, 1045-1054. [Crossref], [Google Scholar], [Publisher]  
[4] V.A. Adole, T.B. Pawar, B.S. Jagdale, J. Sulphur Chem., 2021, 42, 131-148. [Crossref], [Google Scholar], [Publisher]  
[5] V.A. Adole, B.S. Jagdale, T.B. Pawar, B.S. Desale, Mat. Sci. Res. India, 2020, 17(specialissue2020), 13-36. [Crossref], [Google Scholar], [Publisher]  
[6] T.B. Pawar, B.S. Jagdale, A.B. Sawant, V.A. Adole, J. Chem. Biol. Phys. Sci., 2017, 7, 167-175. [Pdf], [Google Scholar], [Publisher]
[7] R.A. Shinde, V.A. Adole, B.S. Jagdale, T.B. Pawar, B.S. Desale, R.S. Shinde, Mat. Sci. Res. India, 2020, 17(specialissue2020), 146-161. [Pdf], [Google Scholar], [Publisher]  
[8] (a) R.A. Shinde, V.A. Adole, B.S. Jagdale, T.B. Pawar, Mat. Sci. Res. India, 2020, 17(specialissue2020), 54-72. [Crossref], [Google Scholar], [Publisher]; (b) S.V. GAIKWAD, M.V Gaikwad, P.D. Lokhande, J. Appl. Organomet. Chem., 2021, 1, 1-8. [crossref], [Pdf], [Google Scholar], [Publisher]; (c) B.S. Hote, D.B. Muley, G.G. Mandawad, J. Appl. Organomet. Chem., 2021, 1, 9-16. [crossref], [Pdf], [Google Scholar], [Publisher]
[9] K.S. Devi, P. Subramani, N. Sundaraganesan, M.S. Boobalan, D. Tamilvendan, J. Mol. Struct., 2020, 1219, 128604. [Crossref], [Google Scholar], [Publisher]  
[10] V.A. Adole, P.B. Koli, R.A. Shinde, R.S. Shinde, Mat. Sci. Res. India, 2020, 17(specialissue2020),41-53. [Crossref], [Google Scholar], [Publisher]
[11] P. Rajamani, V. Vijayakumar, P. Nagaraaj, N. Sundaraganesan, Polycyl. Aromat. Comp., 2020, 1-21. [Crossref], [Google Scholar], [Publisher]
[12] S.S. Pathade, V.A. Adole, B.S. Jagdale, T.B. Pawar, Mat. Sci. Res. India, 2020, 17(special issue2020), 27-40. [Crossref], [Google Scholar], [Publisher]
[13] V.A. Adole, R.H. Waghchaure, B.S. Jagdale, T.B. Pawar, S.S. Pathade, J. Adv. Sci. Res., 2020, 11, 64-70. [Crossref], [Google Scholar], [Publisher]  
[14] R.H. Waghchaure, T.B. Pawar, World J. Pharm. Res., 2020, 9, pp.1867-1881. [Crossref], [Google Scholar], [Publisher]  http://dx.doi.org/10.20959/wjpr20206-17663
[15] N. Karthikeyan, J.J. Prince, S. Ramalingam, S. Periandy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 139, 229-242. [Crossref], [Google Scholar], [Publisher]  
[16] D.M. Gil, M.D. Lestard, O., Duque, J. Estévez-Hernández, E. Reguera, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 145, 553-562. [Crossref], [Google Scholar], [Publisher]  
[17] B.S. Jagdale, S.S. Pathade, J. Appl. Chem., 2019, 8, 12-19. [Pdf], [Google Scholar], [Publisher]
[18] S.S. Pathade, B.S. Jagdale, J. Adv. Sci. Res., 2020, 11, 87-94. [Pdf], [Google Scholar], [Publisher]
[19] S.L. Dhonnar, V.A. Adole, N.V. Sadgir, B.S. Jagdale, Phys. Chem. Res., 2021, 9, 193-209. [Crossref], [Google Scholar], [Publisher]
[20] S.S. Pathade, B.S. Jagdale, Phys. Chem. Res., 2020, 8, 671-687. [Crossref], [Google Scholar], [Publisher]  
[21] E. Fereyduni, E. Vessally, E. Yaaghubi, N. Sundaraganesan,  Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 81, 64-71. [Crossref], [Google Scholar], [Publisher]
[22] M. Shkir, S. AlFaify, H. Abbas, S. Muhammad, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 147, 84-92. [Crossref], [Google Scholar], [Publisher]  
[23] V.A. Adole, R.H. Waghchaure, B.S. Jagdale, T.B. Pawar, Chem. Bio. Interface, 2020, 10, 22-30. [Pdf], [Google Scholar], [Publisher]
[24] S.P. Vijaya Chamundeeswari, E. James Jebaseelan Samuel, N. Sundaraganesan,  Mol. Simul., 2012, 38, 987-1000. [Crossref], [Google Scholar], [Publisher]  
[25] V.A. Adole, V. R. Bagul, S. A. Ahire, R. K. Pawar, G. B. Yelmame, A. R. Bukane, J. Adv. Sci. Res., 2021, 12(1) Suppl 1, 276-286. [Pdf], [Google Scholar], [Publisher]
[26] a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652. [Crossref], [Google Scholar], [Publisher]; b) A.D. Becke, J. Chem. Phys., 1993, 98, 1372-1377.  [Crossref], [Google Scholar], [Publisher]
[27] S.A. Halim, M.A. Ibrahim, J. Mol. Struct., 1130, 543-558. [Crossref], [Google Scholar], [Publisher]
[28] M. J. Frisch, et al., Gaussian 03 Revision E.01, Gaussian Inc., Wallingford CT. 2004. [Google Scholar], [Publisher]
[29] V.A. Adole, T.B. Pawar, P.B. Koli, B.S. Jagdale,  J. Nanostructure Chem., 2019, 9, 61-76. [Crossref], [Google Scholar], [Publisher]  
[31] V.A. Adole, B.S. Jagdale, T.B. Pawar, A.B. Sawant, J. Chin. Chem. Soc., 2020, 67, 1763-1777. [Crossref], [Google Scholar], [Publisher]  
[32] P. Rathi, R. Khanna, V.S. Jaswal, J. Chin. Chem. Soc., 2020, 67, 213-217. [Crossref], [Google Scholar], [Publisher]