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A B S T R A C T 
 
Stemona alkaloids are structurally complex and polycyclic alkaloids, obtained 
from a novel class of natural plants which are extracted, separated, and purified 
from Stemonaceae family. They are abundantly and more exclusively obtained 
from the renowned three classes, namely Stemona, Stichoneuron, and Croomia of 
monocotyledonous family Stemonaceae. They are structurally distinguished by 
the presence of a central pyrroloazepine core.  By 2019, almost 215 Stemona 
alkaloids were isolated from nature. More than 80 members have already been 
discovered and many more are in pipeline likely to be isolated. Traditionally, 
their roots have been used for centuries in Chinese medicine for a variety of 
purposes including (but not limited to): Treatment of bronchitis, tuberculosis, 
pertussis, as well as anti-parasitic agents. By rational comparing and 
contrasting, the multidimensional bioactivities of Stemona alkaloids specifically 
stemofoline-type derivatives are the most promising compounds representing 
many lead structures for further development of commercial agents used in 
pharmaceutical and chemical industries. Here, on our total synthesis proposal, 
we vividly explained step by step the total synthesis procedure to get the 
Stemona alkaloid: Tuberostemonamide. This renowned Stemona alkaloid has 
potent pharmaceutical effects in the treatment of different neurodegenerative 
diseases and inflammatory conditions. For such fascinating future work and 
robust research scope, we proposed and worked on a unique and effective total 
synthetic pathway for the Tuberostemonamide synthesis, which can be used in 
the synthetic organic lab. It is hoped that the proposed synthetic process 
discussed here would be utilized efficiently and give the highest possible yield 
(%).  

Introduction 

owadays natural plants are playing a 
vital role in the synthesis of a wide 
variety of safest drugs. Due to the 

various emergent side effects in the human 
body with synthetic and semisynthetic drugs, 
scientists are more interested in developing 
Phyto-based drugs. The importance of natural 
components in traditional medicine has been N 
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well recognized and the concept is used to 
develop many outstanding lifesaving drugs, 
which either possess the whole structure of 
core natural product or incorporate through 
chemical modifications (usually 
straightforward). At present, medicinally and 
clinically important natural products are 
considerably invented through phenotypic or 
simply target-based screening. 

Natural plants have been used extensively as 
medicine throughout the world for many 
centuries, [1−3] and so is the total synthetic 
process of plant-based natural products to 
become a reliable means of inventing new 
components with known detailed functional 
characteristics of novel compounds, which 
ultimately promote them to new drug discovery 
[4−6]. Stemonaceae plant products have a 
wonderful prestigious timeline of utilization 
medicinally to manage pertussis, tuberculosis, 
anthelmintics, and bronchitis in Japan and 
China [7]. Almost 215 multi-dimensional 
alkaloids have been isolated to date [8]. 
although very small parts of Stemona alkaloids 
have been asymmetrically synthesized [7−9]. 

Alkaloid extract from S. tuberosa showed very 
potent anticough activity in guinea pigs [10-11]. 
Various Stemona alkaloids have been found to 
show antitussive and insecticidal activities [12–
14]. At present,  over 80 Stemona alkaloids have 
been identified separated from Stemona 
species, which can structurally be categorized 
into six different simple groups namely, the 
stemoamide group, stenine groups, 
tuberostemospironine groups, stemonamine 
group, parvistemoline group, and miscellaneous 
group, respectively [15]. Chemical 
diversification and variability were highly 
prominent in S. tuberosa. [16] In search for 
biologically active alkaloids of S. tuberosa, four 
new stemona alkaloids were isolated and 
identified, including 
didehydrotuberostemonine A (1), stemoninone 
(2), tuberostemospiroline (3), and 
tuberostemonine L (4), accompanied by the 
seven known alkaloids 2-oxostenine (5), 
tuberostemonine (6), sessilifoliamide H (7), 
tuberostemonone (8), 
didehydrotuberostemonine (9), 
bisdehydrostemoninine (10), and 

tuberostemoamide (11), taken from the roots of 
this plant. 

Many recent studies on S. tuberosa of various 
localities have already isolated more than 80 
prominent alkaloids, [17] which are divided 
into tuberostemoninetype, [18–22] 
stemoninine-type, [23–24], and croomine-
type.[25–26] Some main alkaloids in Baibu, 
such as neotuberostemonine and neostenine 
have been proved to exhibit antitussive potency 
comparable to codeine [21]. Stemoninine and 
bisdehydrostemoninine have shown significant 
anticough activity in the guinea pig after cough 
induction by citric acid aerosol stimulation [23-
24]. 

More interestingly, Stemona alkaloids have 
been also evaluated in insects on their nicotinic 
acetylcholine receptors. Cholinergic receptors 
are stimulated by the binding of acetylcholine 
(Ach). In humans, the blocking of AchE 
(acetylcholine esterase) prolongs the duration 
of action of acetylcholine (Ach), which is very 
helpful for the treatment of renowned 
Alzheimer’s disease (AD) of aged patients. 
Already, many alkaloids have been found to be 
effective as AchE inhibitors. The life-
threatening Alzheimer’s disease drugs are 
galantamine, rivastigmine, donepezil, and 
memantine [27]. Thus, Stemona alkaloids have 
medicinal potentials in humans to treat AD [28].  

It is known that biologically effective natural 
products are most discovered rather than 
synthetic substances for the healing of human 
diseases, interestingly even in lacking extensive 
information about the purpose of the natural 
products in their original biological setting. The 
success of such relentless efforts of some 
researchers has led to suggest that scaffolds of 
natural products may lead to useful chemical 
libraries. Unfortunately, one single Stemona 
alkaloidal component is barely developed for 
the next investigational medicinal use. It 
happens prominently due to the lack of 
extensive biological profiling, which is 
extensively affected by accurate separation as 
well as proper synthetic access process. Two 
Stemona components, namely 
tuberostemoamide and sessilifoliamide A, were 
separated by Lin [29-30] and Takeya, [31] 
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respectively, which first presented their total 
synthesis and medicinal evaluation.  
Structurally speaking, these two naturally 
obtaining alkaloidal components have the same 
5/7/5 tricyclic skeleton, which is why it is 
highly reasonably acceptable to present direct 
structural modification at the ester portion, 
which would be an innovative synthetic plan for 
the abovementioned two tetracyclic alkaloidal 
substances. Based on the excellent work of Dai 
[32] and Chida−Sato, [33] and at the same time 
proper utilization of structural activity 

relationship of the stemoamide-group alkaloids, 
scientists have proposed corresponding 
retrosynthetic breakdowns as well as total 
synthesis strategy, for both Tuberostemoamide 
and Sessilifoliamide A. In our total synthesis 
proposal for the Tuberostemonamide Stemona 
alkaloid, we also discussed the possible 
complete retrosynthetic analysis and synthetic 
pathways for easy understanding and ultimate 
efficient synthesis of the final product.   
Retrosynthetic Analysis 

 
Figure 1. Retrosynthetic analysis of Tuberostemonamide 

In Figure 1 above, we can see our proposed 
Retrosynthetic analysis. At first, 
Tuberostemonamide undergoes hydrogenation 
then the lactone ring broke up to get hydroxyl 
compound. Next, we obtain a keto compound. 
After subsequent disassembly by oxidation, we 
get TBSO -pyroglutamic derivative. But this 

TBSO compound is not commercially available, 
so we proceed further conversion to achieve a 
very cheap and commercially available 
compound: (R)-(-)-5-(Hydroxymethyl)-2-
pyrrolidinone.  

Forward Synthesis Pathways 
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Figure 2. Proposed forward synthesis of Tuberostemonamide 

In Figure 2, the total forward synthesis 
pathways are illustrated step by step to reach 
our desired product “Tuberostemonamide”. At 
first, we initiate our total synthesis process 
with the commercially available starting 
reagent: (R)-(-)-5-(Hydroxymethyl)-2-
pyrrolidinone. This reagent is treated with 

TBSCI along with Imidazole in the presence of 
DMAP to obtain the compound (2). Thus, we 
can protect the Hydroxyl group of the 
compound (1). Then, the compound (2) reacts 
with the iodide compound in presence of 
KHMDS to produce compound (3), which 
ultimately produces the alcoholic compound (4) 
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by treating TBAF and THF. Then, this 
compound produces keto compound (5) by 
oxidation process with Chromic acid. The 
compound (5) reacts with a butanoate reagent 
to generate compound (6). Then, Strong 
Fluoroantimonic acid reacts with compound (6) 
to produce a keto compound (7). Subsequently, 
the compound undergoes samarium (II) iodide 
(SmI2) mediated cyclization reaction to make a 
cyclic product (8). Then, the compound (8) 
reacts with an iodide reagent in presence of t-
BuLi to generate compound (9). By renowned 
“Swern oxidation”, the compound (9) is 
converted to compound (10). Finally, by the 
further oxidation process, we can produce our 
desired final product, i.e. Tuberostemonamide 
(11). 

Commercial Sources 

Our starting reagent is (R)-(−)-5-
(Hydroxymethyl)-2-pyrrolidinone, 
(M.W.:115.13; Chemical Formula: C5H9NO2), 
which is readily available in Sigma-Aldrich Inc. 
(Product number: 366358, CAS number: 
66673-40-3, 1 g: $72.10). Again DMAP [4-
(Dimethylamino) pyridine] (Product number: 
107700, CAS number: 1122-58-3, 5 g: $18.60) 
and Imidazole (Product number: I2399, CAS 
number: 288-32-4, 100 g: $43.30) are also 
cheaply available in Sigma-Aldrich Inc.   

Conclusion 

In conclusion, by adopting more convenient and 
cheapest synthetic pathways, we proposed our 
total plausible synthesis of 
Tuberostemonamide. It is, based on the current 
study, that the synthetic strategy would result 
in the highest yield (%) of the product. As the 
recent synthetic world is always evolving, so 
any synthetic chemist may follow this synthetic 
procedure and can modify as necessary to 
produce other Stemona alkaloids that would be 
used in different human diseases. One of the 
highly helpful tips for the future of new phyto-
based drug discovery is that, by considering 
and exploiting the versatility of the tricyclic 
intermediates of this Stemona, total synthesis of 
similar 5/7/5 tricycle bearing alkaloidal 
molecules are presently in pipeline and are 
widely growing, which, coupled with our 

innovative synthetic research process, will 
definitely potentiate future biosynthetic 
medicinal, and clinical explorations of such 
highly fascinating as well as attractive 
alkaloidal natural components. 
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