Original Article: The immobilized SbF_x species on copper or nickel ferrite as magnetic nanocatalysts for fast and convenient reduction and reductive acetylation of nitroarenes as well as acetylation of arylamines

Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran

Citation B. Zeynizadeh*, M. Khanmirzaee, M. Rabiei. **The immobilized SbFx species on copper or nickel ferrite as magnetic nanocatalysts for fast and convenient reduction and reductive acetylation of nitroarenes as well as acetylation of arylamines**. *J. Appl. Organomet. Chem.*, **2021**, *1*(4), 174-196.

di https://doi.org/10.22034/jaoc.2021.303399.1035.

Article info: Received: September 06, 2021 Accepted: December 12, 2021 Available Online: ID: JAOC-2109-1035 Checked for Plagiarism:Yes Peer Reviewers Approved by: Dr. Fatemeh Mohajer Editor who Approved Publication: Professor Dr. AbdelkaderZarrouk

Keywords:Arylamines,CuFe2O4@SbFx,NiFe2O4@SbFx,Nitroarenes,Reduction, Reductive acetylation

<u>ABSTRACT</u>

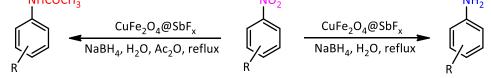
In this study, magnetic nanoparticles (MNPs) of the immobilized SbF_x species on copper or nickel ferrite as CuFe₂O₄@SbF_x and NiFe₂O₄@SbF_x were synthesized. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Brunauer-Emmett-Teller (BET) analysis, and inductively coupled plasma optical emission spectroscopy (ICP-OES) were employed to characterize the prepared nanocatalysts. The catalytic activity of the nanomaterials was more studied towards reduction and reductive acetylation of structurally diverse aromatic nitro compounds as well as acetylation of arylamines. Among the examined nanocatalyst systems, CuFe₂O₄@SbF_x was used for reduction and reductive acetylation of aromatic nitro compounds, whereas, NiFe₂O₄@SbF_x showed activity towards acetylation of arylamines. All reactions were carried out successfully in H₂O as a green solvent under reflux conditions. After completion of the reactions, the examined nanocatalysts were easily removed from the reactions mixture by an external magnetic field. Their reusability was also examined for 5 consecutive cycles without the significant loss of the catalytic activity.

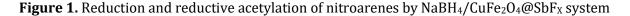
Introduction

mines are extensively present in plants and animals. Biogenic amines such as histamine have many vital uses in the human body [1]. In this context, arylamines are the forerunner materials in the industry to produce colors, pesticides, herbicides, and photochromic compounds [2]. So, the reduction of aromatic nitro compounds is one of the straightforward methods for preparing arylamines [3].

*Corresponding Author: Behzad Zeynizadeh (bzeynizadeh@gmail.com)

Over the past decades. NaBH₄ has been frequently used as a mild reducing agent in modern organic synthesis. It is also known that the lonely NaBH₄ cannot reduce nitro ordinary under compounds conditions. however, the reducing capability of this reagent in the presence of various additives such as metal halides [4, 5] was exceptionally towards reduction promoted of nitro functionality.


The literature review shows that execution of the reactions under green conditions needs catalyst systems with high reactivity, extreme surface area, and good separable property. These characteristics could be easily and efficiently achieved by nanotechnology [6]. In this context, the importance and applications of nanostructured materials have been well documented in all aspects of science and technology [7-12].


Among the numerous nanomaterial systems, the use of magnetic nanoparticles has attracted a great deal of attention because of biocompatibility, ease of surface modification, inherent magnetic property, ease of separation by an external magnetic field, and high potentiality to use in various fields of industry [13]. In this area, the application of ferrites in various catalytic reactions shows the great conveniences of magnetic materials [14-21]. It is also well known that the good physical and chemical properties of spinel ferrites are due to the distribution of metal cations with different NHCOCH₂

Journal of Applied Organometallic Chemistry

oxidation states between octahedral and tetrahedral sites [22-24]. In this area, copper and nickel spinel ferrites are the widely used magnetic metal oxides because of nontoxicity, biocompati-bility, high thermal stability up to 900 °C without losing the magnetic property, and effective catalytic activity in various processes [25-34]. These great characteristics make them susceptible to consider as the best candidates to modify their surfaces with different metal species for the promotion of various organic transformations.

Aligned with the outlined strategies, herein, the present work reveals the immobilization of SbF_x on the surface of $CuFe_2O_4$ and $NiFe_2O_4$ MNPs to afford the magnetic nanoparticles of CuFe₂O₄@SbF_x and NiFe₂O₄@SbF_x. These nanocomposites were easily separated from the reaction mixture by an external magnetic field. After washing with EtOAc, they could be recycled and reused for 5 consecutive cycles without the significant loss of the catalytic activity. The obtained results exhibited that reduction and reductive acetylation of aromatic nitro compounds were carried out efficiently with CuFe₂O₄@SbF_x MNPs. As well, due to the importance of the protection of amines as one of the widely used strategies in the multistep synthesis of organic compounds [35-44], using NiFe₂O₄@SbF_x MNPs towards Nacetylation of arylamines was also examined successfully (Figures 1 and 2).

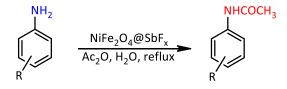


Figure 2. N-Acetylation of arylamines with NiFe₂O₄@SbF_X/Ac₂O system

Experimental

All reagents and materials were purchased from chemical sources and they were used without further purification. A Thermo Nicolet Nexus 670 spectrometer was used to record Fourier transform infrared spectra of the materials. X-ray diffraction (XRD) measurements were fulfilled on X'Pert Pro Panalytical diffractometer at 40 kV/30 mA with a Cu K α radiation (λ =1.5418 A°). Signal data were recorded in $2\theta = 10^{\circ} - 80^{\circ}$ with a step interval of 0.05°. A FESEM-TESCAN MIRA3 apparatus was utilized to determine the morphology and size distribution of particles by scanning electron microscopy (SEM) method. This apparatus was also used to reveal the chemical composition of the nanocatalysts through the energydispersive X-rav spectroscopy (EDX) The BET (Brunauer-Emmetttechnique. Teller) surface area, pore-volume, and pore diameter of the samples were measured using Belsorp-Max, Japan. Vibrating sample magnetometer (VSM, Meghnatis Daghigh Kavir Co., Iran) analysis under magnetic field up to 20 kOe was applied to determine the magnetic property of the samples. Ni, Cu, Fe, and Sb contents of the nanocatalysts were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES) on Optima 7300D spectrophotometer. Ultrasonic irradiation was carried out in SOLTEC SONICA 2400MH S3 (305 W). ¹H and ¹³C NMR spectra were recorded on 300 MHz Bruker spectrometer. Thin-layer chromatography (TLC) was utilized to determine the purity of products and to monitor the progress of reactions using SILG/UV 254 aluminum sheets

Synthesis of CuFe₂O₄ and NiFe₂O₄ MNPs

The magnetic nanoparticles of $CuFe_2O_4$ and $NiFe_2O_4$ were synthesized based on the reported procedure [29]. A mixture of $Cu(OAc)_2 \cdot H_2O$ or $Ni(OAc)_2 \cdot 4H_2O$ (1 mmol), $Fe(NO_3)_3 \cdot 9H_2O$ (2 mmol), NaOH (8 mmol), and NaCl (2 mmol) was grinded at room temperature for 50 min. During of the reaction, the color of the mixture was changed from blue to brown and then to black. The reaction was

accompanied by the release of heat. Next, the mixture was washed with deionized water to remove the residue of sodium chloride and then filtered. The obtained solid materials were dried at 80 °C for 2 h and then grinded for 10 min. Calcination of the grinded materials at 700 °C for 5 h afforded the black nanoparticles of CuFe₂O₄ or NiFe₂O₄.

Synthesis of $CuFe_2O_4@SbF_x$ and $NiFe_2O_4@SbF_x$ MNPs

A mixture of CuFe₂O₄ or NiFe₂O₄ MNPs (1 g) in deionized H₂O (20 mL) was irradiated by ultrasound for 30 min. Then, a solution of SbF₃ (0.25 g) in deionized H₂O (5 mL) was added and the resulting mixture was sonicated for 30 min followed by stirring for 12 h under reflux conditions. Separation of the nanoparticles by magnetic decantation and then washing with deionized H₂O afforded CuFe₂O₄@SbF_x or NiFe₂O₄@SbF_x MNPs for further drying under air atmosphere.

A typical procedure for reduction of nitrobenzene with NaBH4/CuFe2O4@SbFx MNPs

In a round bottom flask (10 mL) equipped with a magnetic stirrer, a mixture of nitrobenzene (0.123 g, 1 mmol) in deionized H₂O (2 mL) was prepared. CuFe₂O₄@SbF_x MNPs (50 mg) was added and the resulting mixture was stirred for 2 min. After that, NaBH₄ (0.076 g, 2 mmol) was added and the mixture stirring was continued for 10 min under reflux conditions. Progress of the reaction was monitored by TLC (eluent: nhexane/EtOAc: 10/2). After completion of the reaction, H₂O (5 mL) was added and the mixture was stirred for 2 min at room temperature. Nanoparticles of CuFe₂O₄@SbF_x were separated by magnetic decantation and the product was extracted using EtOAc (3×5 mL). The combined extracts were dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure afforded the pure liquid aniline in 95% yield (0.088 g, Table 2, entry 1).

A typical procedure for reductive acetylation of nitrobenzene with NaBH₄/CuFe₂O₄@SbF_x/ Ac₂O system

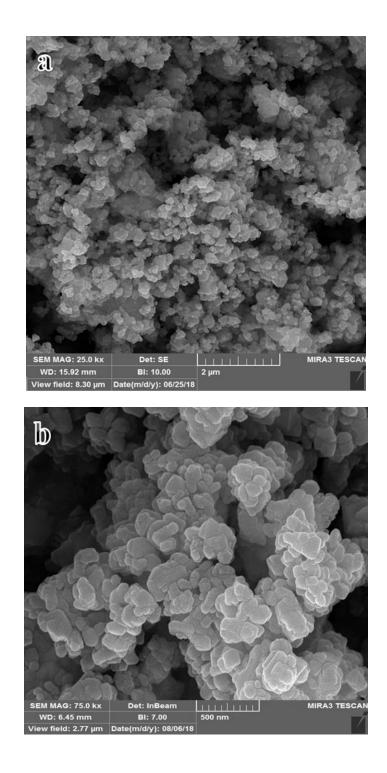
In a round bottom flask (10 mL) equipped with a magnetic stirrer, a mixture of nitrobenzene (0.123 g, 1 mmol) in deionized H₂O (2 mL) was prepared. CuFe₂O₄@SbF_x MNPs (50 mg) was added and the resulting mixture was stirred for 2 min. After that, NaBH₄ (0.076 g, 2 mmol) was added and the mixture stirring was continued for 10 min under reflux conditions. Progress of the reaction was monitored by TLC (eluent: nhexane/EtOAc: 10/2). When the reduction of nitrobenzene was completed, Ac₂O (0.204 g, 2 mmol) was then added and the resulting mixture was stirred for 1 min. Progress of the *N*-acetylation of aniline was monitored by TLC. Next, H₂O (5 mL) was added and the mixture was stirred for 1 min at room temperature. Nanoparticles of CuFe₂O₄@SbF_x were separated by magnetic decantation and the product was extracted using EtOAc (3×5 mL). The combined extracts were dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure afforded the pure white crystals of acetanilide in 95% yield (0.128 g, Table 3, entry 1).

A typical procedure for N-acetylation of aniline catalyzed by NiFe₂O₄@SbF_x/Ac₂O system

In a round bottom flask (10 mL) equipped with a magnetic stirrer, a mixture of aniline (0.093 g, 1 mmol) in deionized H₂O (2 mL) was prepared. NiFe₂O₄@SbF_x MNPs (30 mg) was added and the resulting mixture was stirred for 2 min. After that, Ac₂O (0.204 g, 2 mmol) was added and the mixture stirring was continued for 1 min under reflux conditions. Progress of the reaction was monitored by TLC (eluent: nhexane/EtOAc: 10/2). After completion of the reaction, H_2O (5 mL) was added and the mixture was stirred for 2 min at room temperature. Nanoparticles of NiFe₂O₄@ SbF_x were separated by magnetic decantation and the product was extracted using EtOAc (3×5 mL). The combined extracts were dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure afforded the pure

white crystals of acetanilide in 90% yield (0.122 g, Table 5, entry 1).

Results and discussion


Synthesis and characterization of CuFe₂O₄@ SbFx and NiFe₂O₄@SbFx MNPs

The magnetic nanoparticles of CuFe₂O₄@SbF_x and NiFe₂O₄@SbF_x were prepared in a two-step procedure: copper and nickel ferrite as a magnetic core was primarily synthesized by solid-state grinding of Cu(OAc)₂·H₂O or $Ni(OAc)_2 \cdot 4H_2O$, $Fe(NO_3)_3 \cdot 9H_2O$, NaOH and NaClin a molar ratio of 1:2:8:2, respectively, at room temperature followed by calcination of the resulting product at 700 °C. Then the antomonyl species were immobilized on the surface of magnetic cores. In this context, a mixture of copper or nickel ferrite and SbF₃ in deionized H₂O was exposed to ultrasonic waves followed by refluxing for 12 h. The resulting nanoparticles were separated by an external magnetic field and washed several times with deionized water and then dried under an air atmosphere.

SEM analysis

To study the morphology and size distribution of CuFe₂O₄, CuFe₂O₄@SbF_x, NiFe₂O₄ and NiFe₂O₄@SbF_x MNPs, scanning electron microscopy (SEM) analysis was carried out over the materials. The images for CuFe₂O₄ (Figure 3a) and $CuFe_2O_4@SbF_x$ (Figure 3b) show that the composite systems were constructed from roughly and granular particles with high porosity. As well, the particles are not aggregated and well distributed in the range of nanometer. The average particle size in $CuFe_2O_4$ and $CuFe_2O_4$ @SbF_x MNPs is about 36-49 and 50-100 nm, respectively. In the case of NiFe₂O₄ (Figure 3c) and NiFe₂O₄@SbF_x (Figure 3d) MNPs, however, an extent to the aggregation of particles is observed. In addition, the porosity of NiFe₂O₄ and NiFe₂O₄@SbF_x in comparison to CuFe₂O₄ and CuFe₂O₄@SbF_x was reduced. Nevertheless, the particles were distributed in nanometer range from 18-24 and 28-46 nm, respectively.

Journal of Applied Organometallic Chemistry

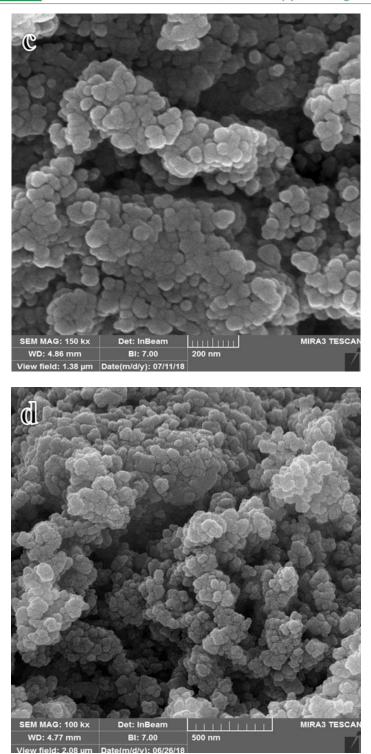
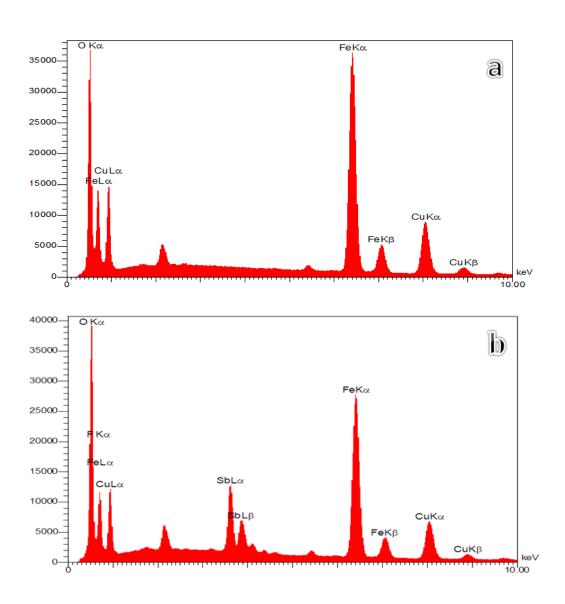


Figure 3. SEM images of a CuFe₂O₄, b CuFe₂O₄@SbF_x, c NiFe₂O₄ and d NiFe₂O₄@SbF_x MNPs


EDX analysis

To determine the elemental composition of the examined nanocatalysts, energy dispersive X-

ray spectroscopy (EDX) was taken place. Observation of the spectra for $CuFe_2O_4$, $CuFe_2O_4@SbF_x$, $NiFe_2O_4$, and $NiFe_2O_4@SbF_x$ MNPs reveals that all the magnetic materials

have the required elements in their composition systems (Figures 4a, b, c, and d).

2021, Volume 1, Issue 4

180

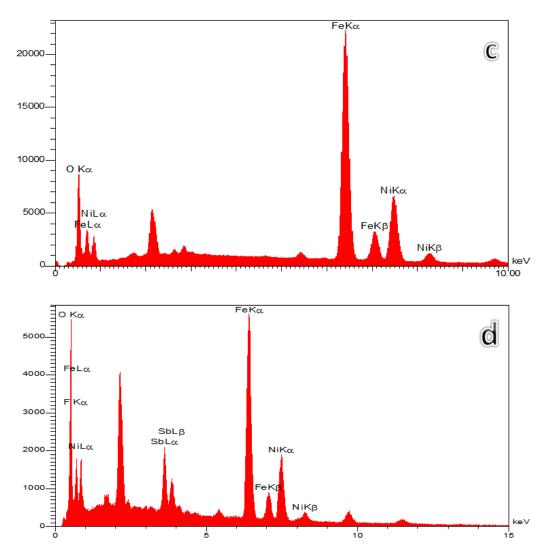
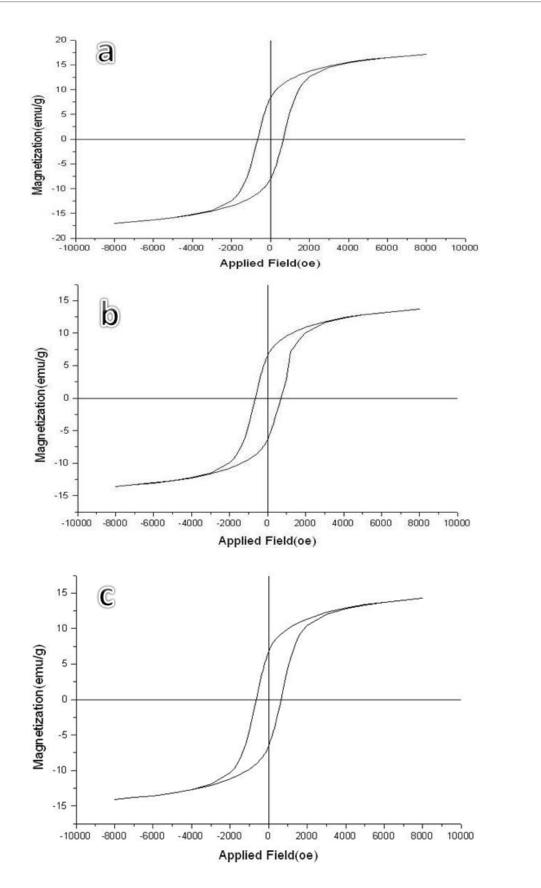
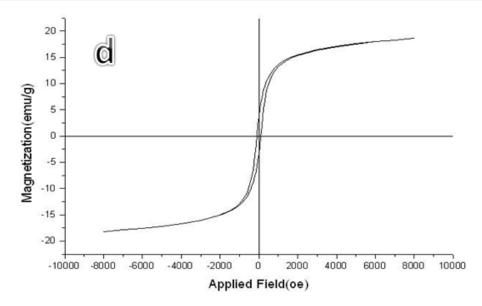
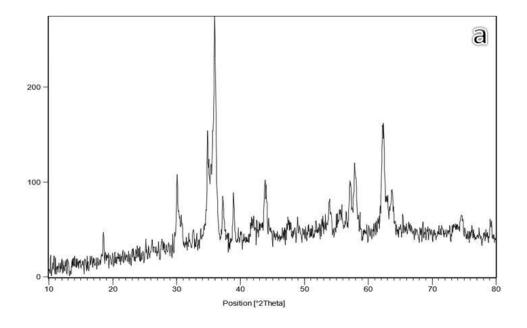
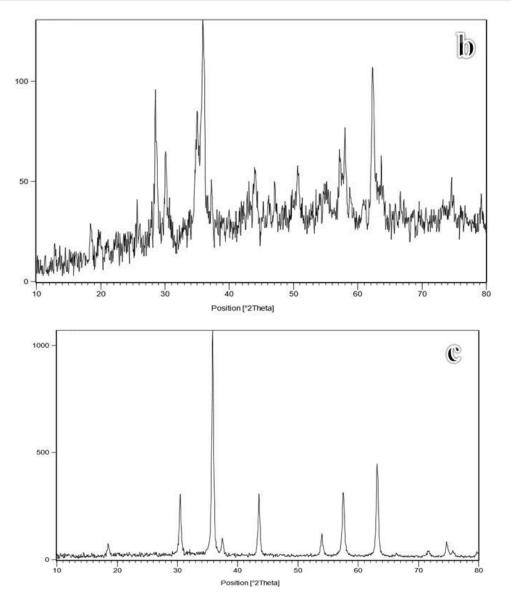



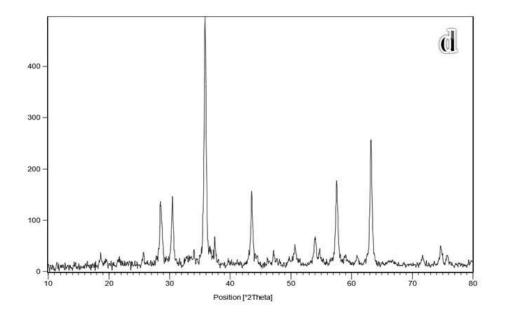
Figure 4. EDX analysis of a CuFe₂O₄, b CuFe₂O₄@SbF_x, c NiFe₂O₄ and d NiFe₂O₄@SbF_x MNPs

VSM analysis

Vibrating sample magnetometer (VSM) analysis was used to measure and compare the magnetic property of the synthesized CuFe₂O₄, CuFe₂O₄@SbF_x, NiFe₂O₄ and NiFe₂O₄ @SbF_x MNPs. In the magnetic field up to 20 kOe, the saturation magnetization (Ms) value for $CuFe_2O_4$ and $CuFe_2O_4@SbF_x$ is 17.11 and 13.68 emu·g⁻¹, respectively (Figures 5a and b). As Ms value for NiFe₂O₄ and well, the NiFe₂O₄@SbF_x is 14.25 and 18.57 emu·g⁻¹, respectively (Figures 5c and d). The obtained results reveal that through the immobilization

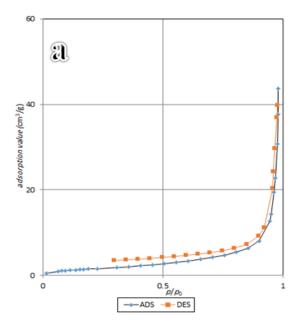
of SbF_x species on the surface of magnetic cores, the saturation magnetization value of CuFe₂O₄@SbF_x in comparison to CuFe₂O₄ was decreased, whereas, the amount for NiFe₂O₄ @SbF_x relative to NiFe₂O₄ was increased. The difference in saturation magnetization behavior of CuFe₂O₄@SbF_x and NiFe₂O₄@SbF_x MNPs via the immobilization of SbF_x species is not clear, however, the kind of interaction of antimony species with central transition metals (Cu or Ni) maybe play a role to affect the magnetic influence of the resulted nanoparticles.


Figure 5. VSM analysis of a CuFe₂O₄, b CuFe₂O₄@SbF_x, c NiFe₂O₄ and d NiFe₂O₄@SbF_x MNPs

XRD analysis

Structural elucidation of $CuFe_2O_4$, $CuFe_2O_4$ @ SbF_x, NiFe₂O₄, and NiFe₂O₄@SbF_x MNPs was also carried out using X-ray diffraction (XRD) analysis. Primarily, the existence of individual sharp peaks in the depicted XRD patterns represents that all the examined nanomaterials have the extent of crystallinity character. The investigation for XRD pattern of CuFe₂O₄ (Figure 6a) and CuFe₂O₄@SbF_x MNPs (Figure 6b) shows the cubic spinel structure in the synthesized nanocatalysts. As well, the peak at $2\theta = 28^{\circ}$ for CuFe₂O₄@SbF_x MNPs exactly refers to the exitance of Sb species [45]. In addition, the analysis for XRD pattern of NiFe₂O₄ (Figure 6c) and NiFe₂O₄@SbF_x (Figure 6d) shows the reverse spinel structure, and the presence of Sb species is also confirmed by a peak position at $2\theta = 28^{\circ}$.


Figure 6. XRD analysis of **a** CuFe₂O₄, **b** CuFe₂O₄@SbF_x, **c** NiFe₂O₄, and **d** NiFe₂O₄@SbF_x

ICP analysis

Inductively coupled plasma optical emission spectrometry (ICP-OES) was used to exactly determine the amount of Cu, Ni, Fe, and Sb elements in the synthesized nanocatalysts. Based on the analyses, the weight percentage of Cu, Fe, and Sb in CuFe₂O₄@SbF_x was 21.27, 36.95, and 16.98%, respectively, and for Ni, Fe, and Sb in NiFe₂O₄@SbF_x was 10.94, 21.08, 12.04%.

BET analysis

In order to determine the specific surface area and pore volume of $CuFe_2O_4@SbF_x$ (Figure 7a) and $NiFe_2O_4@SbF_x$ (Figure 7b), the N_2 adsorption-desorption analysis (BET) was investigated. The results exhibit that the specific surface area of $CuFe_2O_4@SbF_x$ and $NiFe_2O_4@SbF_x$ MNPs is 6.12, 14.642 m².g⁻¹ and the pore volume is 0.07, 0.09 cm³.g⁻¹, respectively.

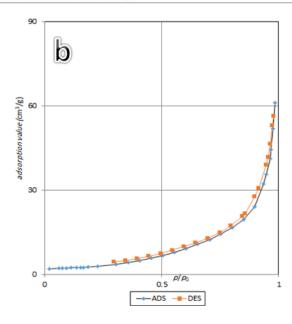


Figure 7. N₂ adsorption-desorption diagram of a CuFe₂O₄@SbF_x and b NiFe₂O₄@SbF_x MNPs

FTIR analysis

Structural elucidation of $CuFe_2O_4$, $CuFe_2O_4$ @ SbF_x, NiFe₂O₄, and NiFe₂O₄@SbF_x MNPs was further studied by Fourier transform infrared spectroscopy. FTIR spectrum of $CuFe_2O_4$ (Figure 8), NiFe₂O₄ (Figure 9) has two high absorption peaks in the low energy area (1000 cm⁻¹) which is related to the vibration of Fe-O bond. The strong absorption peaks at 1633-2360 and 3426-3440 cm⁻¹ are also attributed to O–H deforming and stretching vibrations of the adsorbed water, respectively. As well, the absorption peaks at 1249 and 1387 cm⁻¹ are regarded to the presence of antimony species in $CuFe_2O_4@SbF_x$ and $NiFe_2O_4@SbF_x$ MNPs, respectively.

2021, Volume 1, Issue 4

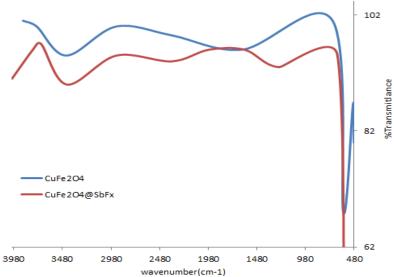


Figure 8. FTIR spectra of a CuFe₂O₄ and b CuFe₂O₄@SbF_x MNPs

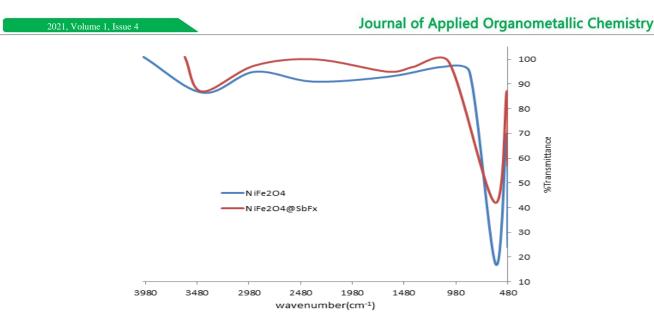


Figure 9. FTIR spectra of a NiFe₂O₄ and b NiFe₂O₄@SbF_x MNPs

The catalytic activity of $CuFe_2O_4@SbF_x$ MNPs towards reduction of nitroarenes

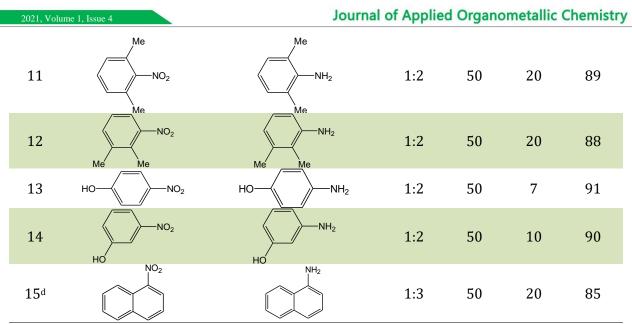
After the synthesis and characterization of $CuFe_2O_4@SbF_x$ MNPs and since of the widespread application of arylamines in organic synthesis, we were encouraged to investigate catalytic activity of the magnetic nanocatalyst towards reduction of nitroarenes. In this context, reduction of nitrobenzene with NaBH₄ in the presence of $CuFe_2O_4@SbF_x$ MNPs was selected as a model reaction and therefore different reaction conditions such as the change of reaction solvent (H_2O , EtOH, and H_2O -EtOH), varying the amount of NaBH₄ and CuFe₂O₄@SbF_x MNPs, as well as the influence of temperature, were examined over the model reaction (Table 1). Based on the obtained results, reduction of nitrobenzene (1 mmol) with NaBH₄ (2 mmol) in the presence of CuFe₂O₄@SbF_x MNPs (50 mg) and in refluxing H_2O (2 mL) was selected as the optimum reaction conditions. Completion of the reaction was taken place in 10 min and the corresponding aniline was obtained in 95% yield (Table 1, entry 6)(Table 2, entry 1).

Table 1. Optimization experiments for reduction of nitrobenzene to aniline with $NaBH_4/CuFe_2O_4@SbF_x MNPs$ systeam^a

Entry	NaBH ₄ (mmol)	CuFe ₂ O ₄ @SbF _x (mg)	Solvent	Condition	Time (min)	Conversion (%)
1	2	_	H_2O	reflux	120	trace
2	2	50	H_2O	r.t.	100	50
3	2	50	EtOH	reflux	5	100
4	3	50	H ₂ O:EtOH (1.5:0.5)	reflux	5	100
5	3	50	H_2O	reflux	5	100
6	2	50	H_2O	reflux	10	100
7	2	70	H ₂ O	reflux	5	100

^aAll reactions were carried out with 1 mmol of nitrobenzene in 2 mL solvent.

Journal of Applied Organometallic Chemistry


Next, the reducing capability of NaBH₄/ CuFe₂O₄@SbF_x system was further studied towards the reduction of structurally different aromatic nitro compounds at the optimized reaction conditions. The results of this investigation are summarized in Table 2. The table shows that all aromatic nitro compounds using 2-3 mmol of NaBH₄ and 50 mg of CuFe₂O₄@SbF_x MNPs in refluxing H₂O (2 mL) were successfully reduced to the corresponding arylamines in 85-95% yields within 5-20 min. In addition, nitro compounds

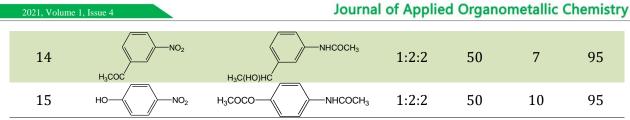
2021, Volume 1, Issue 4

20 min. In addition, nitro compounds containing carbonyl functionality (aldehyde and ketone) were also successfully reduced without any selectivity among nitro and carbonyl groups and so the corresponding amino alcohols were obtained as the final products.

	(R	NO ₂ CuFe ₂ O ₄ @SbF _x NaBH ₄ , H ₂ O, reflux	R NH ₂			
Entry	Substrate	Product	Molar Ratio ^ь	Cat. (mg)	Time (min)	Yield (%)°
1		NH ₂	1:2	50	10	95
2			1:2	50	7	94
3	OHC NO2	HOH ₂ C	1:2	50	6	92
4	OHC-NO2	HOH ₂ CNH ₂	1:2	50	5	91
5	H ₃ COC	H ₃ C(HO)HC	1:2	50	6	93
6	H ₃ COC-NO ₂	H ₃ C(HO)HC NH ₂	1:2	50	5	90
7 ^d	NO ₂	H ₂ N	1:3	50	15	90
8	Me	Me	1:2	50	8	94
9		MeNH2	1:2	50	11	94
10	Me-NO ₂	Me-NH ₂	1:2	50	9	92

Table 2. Reduction of nitroarenes with $NaBH_4/CuFe_2O_4@SbF_x$ system^a

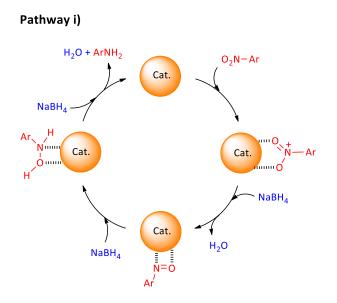
 a All reactions were carried out in refluxing H₂O (2 mL). b Subs./NaBH₄. c Yields refer to isolated pure products. d NaBH₄ was added portion wisely.


*The catalytic activity of CuFe*₂O₄@*SbF*_x *MNPs towards reductive acetylation of nitroarenes*

Amides are useful intermediates in the production of many agricultural chemicals and industrial products. In this area, reductive acetylation of amines is the straightforward method for preparing of N-arylacetamides. This reaction could be taken place indirectly in a two-step procedure. Primarily, reduction of nitro compounds to the corresponding amines is carried out, and then the acetylation of isolated amines as a second step leads to the production of N-arylacetamides. The successful catalytic activity of CuFe₂O₄@SbF_x MNPs towards reduction of aromatic nitro compounds to arylamines with NaBH₄ encouraged us to study the capability of the examined nano catalyst towards reductive acetylation of nitroarenes without the isolation of the intermediate arylamines. In this context. reductive acetvlation of nitrobenzene with NaBH₄/Ac₂O system in the presence of CuFe₂O₄@SbF_x MNPs was studied. In this context, when the reduction of NaBH₄/CuFe₂O₄@SbF_x nitrobenzene with system at the optimized reaction conditions was completed, Ac₂O (2 mmol) was added to

the reaction mixture without the isolation of the produced aniline. Progress of the reaction was continued by the formation of acetanilide as a final product within 1 min. Therefore, reductive acetylation of nitrobenzene to acetanilide was taken place within 11 min (10 min for reduction of $PhNO_2$ to $PhNH_2$ and 1 min for the transformation of PhNH₂ to PhNHCOCH₃). Accordingly, reductive acetylation of structurally diverse nitroarenes was carried out by NaBH₄ (2 mmol)/CuFe₂O₄@ SbF_x (50 mg)/Ac₂O (2 mmol) to afford the corresponding *N*-arylacetamides in high yields. The results of this investigation are summarized in Table 3. Investigation of the results exhibit that in the case of nitro compounds containing the functionality of carbonyl groups in which the reduction reaction produces amino alcohols as the intermediates, the further acetylation reaction was taken place only on the amino group and hydroxyl group was remained intact (Table 3, entries 7-9, 13 and 14). In the case of phenolic functionality in the presence of the amino group, however, the acetylation was carried out with the same reactivity on both functionalities (Table 3, entries 11 and 15).

	R	$CuFe_2O_4@SbF_x$ NaBH ₄ , H ₂ O, reflux Ac ₂ O, reflux		-		
Entry	Substrate	Product	Molar Ratio ^b	Cat. (mg)	Time (min)	Yield (%) ^c
1			1:2:2	50	11	95
2	Me NO2	Me	1:2:2	50	9	90
3		MeNHCOCH3	1:2:2	50	12	93
4	Me-NO2		1:2:2	50	10	91
5	Me NO ₂		1:2:2	50	25	88
6	Me Me		1:2:2	50	25	90
7			1:2:2	50	8	88
8	OHC OHC	HOH ₂ C	1:2:2	50	7	90
9		HOH ₂ C	1:2:2	50	6	92
10 ^d	NO ₂		1:3:4	50	100	85
11		H ₃ COCO NHCOCH ₃	1:2:2	50	11	90
12 ^d			1:3:4	50	25	88
13	H ₃ COC-NO ₂	H ₃ C(HO)HC NHCOCH ₃	1:2:2	50	6	95


Table 3. Reductive acetylation of aromatic nitro compounds with $NaBH_4/CuFe_2O_4@SbF_x/Ac_2O$ systeama

^aAll reactions were carried out in refluxing H₂O (2 mL). ^bSub./NaBH₄/Ac₂O. ^cYields refer to isolated pure products. ^dNaBH₄ was added portion wisely.

Although the exact mechanism of this synthetic protocol is not clear, however, $CuFe_2O_4@SbF_x$ MNPs could be influenced by reduction of nitroarenes with NaBH₄ in two plausible pathways: in pathway i), transferring of hydride from sodium borohydride towards

nitro group plays a key role. In pathway ii), $NaBH_4$ in aqueous media generates molecular H_2 and therefore its adsorption on the surface of nanocatalyst could be reduced nitro functionality (Figure 10).

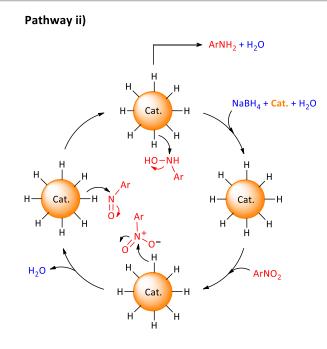


Figure 10. Plausible mechanisms for NaBH $_4$ reduction of nitroarenes catalyzed by CuFe $_2O_4@SbF_x$ MNPs

Acetylation of arylamines by NiFe₂O₄@SbF_x/ Ac₂O system

Acetylation is a useful reaction for protecting amino groups in a multistep synthesis of complex organic molecules. Prompting by the successful catalytic activity of $CuFe_2O_4@SbF_x$ MNPs for reduction and reductive acetylation of aromatic nitro compounds, we decided to study the catalytic activity of $NiFe_2O_4@SbF_x$ MNPs for the acetylation of arylamines. In this context, aniline was selected as a model compound and therefore it was subjected to NiFe₂O₄@SbF_x/Ac₂O system under different reaction conditions. Investigation of the results in Table 4 represents that 1 mmol of aniline in the presence of 2 mmol of Ac₂O and 30 mg of NiFe₂O₄@SbF_x MNPs was success-fully acetylated within 1 min in refluxing H₂O (2 mL). As well, the corresponding acetanilide was obtained in 90% yield (Table 4, entry 5)(Table 5, entry 1).

Entry	NiFe ₂ O ₄ @SbF _x (mg)	Ac ₂ O (mmol)	Solvent	Condition	Time (min)	Conversion (%) ^b
1	30	2	CH_2Cl_2	Reflux	120	70
2	30	2	THF	Reflux	120	60
3	30	2	CH ₃ CN	Reflux	120	40
4	30	2	H ₂ O:EtOH(1.5:0.5)	Reflux	10	100
5	30	2	H ₂ O	Reflux	1	100

Table 4. Optimization	on experiments fo	or acetylation of aniling	ne with NiFe ₂ O	₄ @SbF _x /Ac ₂ O system ^a

^aAll reactions were carried out with 1 mmol aniline in 2 mL solvent. ^conversion less than 100% was determined on the basis of the recovered aniline.

Continued by the success, acetylation of structurally different arylamines with $NiFe_2O_4$ @SbF_x/Ac₂O system at the optimized reaction

conditions was carried out. The summarized results in Table 5 show that the arylamines using 2-4 mmol of Ac_2O and 30 mg of

 $NiFe_2O_4@SbF_x$ MNPs in refluxing H_2O were easily acetylated to the corresponding N-

arylacetamides within 1-18 min and 87-92% yield.

NHCOCH₃

Table 5. Acetylation of aromatic amines with NiFe₂O₄@SbF_x/Ac₂O system^a

NH₂

	R	$\frac{\text{NiFe}_2\text{O}_4@\text{SbF}_x, \text{Ac}_2\text{O}}{\text{H}_2\text{O}, \text{reflux}}$				
Entry	Substrate	Product	Molar Ratio ^ь	Cat. (mg)	Time (min)	Yield (%)¢
1	NH ₂	NHCOCH3	1:2	30	1	90
2			1:3	30	4	91
3			1:3	30	6	89
4	Me-NH ₂	Me-NHCOCH ₃	1:2	30	1	92
5	NH ₂		1:2	30	1	91
6	NH ₂	NHCOCH3	1:3	20	2	88
7	H ₂ N-NH ₂	H ₃ COCHN NHCOCH ₃	1:4	40	18	90
8	MeONH2	MeO	1:2	20	1	90
9	H ₃ COC	H ₃ COC	1:2	30	1	87

^aAll reactions were carried out in refluxing H₂O (2 mL). ^bSub./Ac₂O. ^cYields refer to isolated pure products.

Reusability

The economic and green aspects of the present protocols were also investigated by examining the reusability of $CuFe_2O_4@SbF_x$ and $NiFe_2O_4@SbF_x$ MNPs towards reduction and reductive acetylation of nitrobenzene as well as the acetylation of aniline. In this context, when the titled transformations were completed, the

examined nanocatalysts were magnetically separated from the reaction mixture. The recycled nanocatalysts were washed with EtOAc and dried for reuse at the next runs. The given results in Figure 11 represent that the nanocatalysts can be reused for 5 consecutive cycles without the significant loss of the catalytic activity.

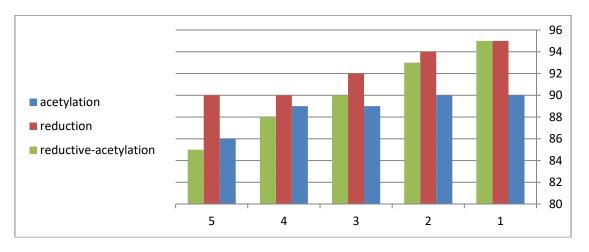


Figure 11. Reusability of CuFe₂O₄@SbF_x and NiFe₂O₄@SbF_x MNPs

Conclusion

In this paper, we have synthesized $CuFe_2O_4$ $@SbF_x$ and NiFe₂O₄ $@SbF_x$ as novel magnetic nanocatalysts towards reduction and reductive acetvlation of diverse aromatic nitro compounds as well as the N-acetylation of arylamines. Characterization of nanomaterials was carried out using FTIR, XRD, SEM, EDX, BET, and VSM analyses. CuFe₂O₄@SbF_x MNPs showed a significant catalytic activity towards reduction and reductive acetylation of nitroarenes, however, NiFe₂O₄@SbF_x MNPs showed activity for N-acetylation of arylamines. All reactions were carried out in H₂O as a green solvent under reflux conditions. The reusability of the nanocatalysts was examined for 5 consecutive cycles without the significant loss of the catalytic activity.

Acknowledgment

The authors gratefully appreciate the financial support of this work by the research council of Urmia University.

References

1. 1. B.T. Brink, C. Damink, H.M.L.J. Joosten, J.H.J. Huis in't Veld, *Int. J. Food Microbiol.*, **1990**, *11*, 73-84. [Crossref], [Google Scholar], [Publisher] A.K. Shil, D. Sharma, N.R. Guha, P. Das, *Tetrahedron Lett.*, **2012**, *53*, 4858-4861.
 [Crossref], [Google Scholar], [Publisher]
 R.S. Downing, P. J. Kunkeler, H.van Bekkum, Catal. Today., **1997**, 37, 121-136. [Crossref],
 [Google Scholar], [Publisher]
 Gribble, G.W., 1997. Reductions in Organic Chemistry, By Milos Hudlicky (Virginia Polytechnic Institute and State University).
 American Chemical Society, Washington, DC.
 1996. [Crossref], [Google Scholar],
 [Publisher]

2021, Volume 1, Issue 4

5. B. Zeynizadeh, T. Behyar, *J. Braz. Chem. Soc.*, 2005, *16*, 1200-1209. [Crossref], [Google Scholar], [Publisher]

6. W. Liu, *China Particuology*, **2005**, *3*, 383-394. [Crossref], [Google Scholar], [Publisher]

7. I. Ali, O.M.L. Alharbi, Z.A. Alothman, A.Y. Badjah. *Photochem. Photobiol.*, **2018**, 94, 935-941. [Crossref], [Google Scholar], [Publisher]

8. I. Ali, H. Y. Aboul-Enein, *Crit. Rev. Anal. Chem.*, 2002, *32*, 337-350. [Crossref], [Google Scholar], [Publisher]

9. I. Ali, O.M.L. Alharbi, A. Tkachev, E. Galunin, A. Burakov, V.A. Grachev, *Environ. Sci. Pollut. Res.*, **2018**, *25*, 7315-7329. [Crossref], [Google Scholar], [Publisher]

10. I. Ali, O.M.L. Alharbi, Z.A. Alothman, A. Alwarthan, *Colloids Surf. B: Biointerfaces*, **2018**, *171*, 606-613. [Crossref], [Google Scholar], [Publisher]

11. A. Jafari, B. Zeynizadeh, S. Darvishi, *J. Mol. Liq.*, **2018**, *253*, 119-126. [Crossref], [Google Scholar], [Publisher]

12. I. Ali, A.E. Burakov, A.V. Melezhik, A.V. Babkin, I.V. Burakova, E.A. Neskomornaya, E.V. Galunin, A.G. Tkachev, D.V. Kuznetsov, *Chem. Select*, **2019**, *4*, 12708-12718. [Crossref], [Google Scholar], [Publisher]

13. S.H. Joo, J.Y. Park, J.R. Renzas, D.R. Butcher, W. Huang, G. A. Somorjai, *Nano Lett.*, **2010**, *10*, 2709-2713. [Crossref], [Google Scholar], [Publisher]

14. G. Busca, E. Finocchio, V. Lorenzelli, M. Trombetta, S.A. Rossini, *J. Chem. Soc. Faraday Trans.*, **1996**, *92*, 4687-4693. [Crossref], [Google Scholar], [Publisher]

15. L. Dong, Z. Liu, Y. Hu, B. Xu, Y. Chen, *J. Chem. Soc. Faraday Trans.*, **1998**, *94*, 3033-3038. [Crossref], [Google Scholar], [Publisher]

16. N.J. Jebarathinam, M. Eswaramoorthy, V. Krishnasamy, *Bull. Chem. Soc. Jpn.*, **1994**, *67*, 3334-3338. [Crossref], [Google Scholar], [Publisher]

17. P. Lahiri, S.K. Sengupta, *J. Chem. Soc. Faraday Trans.*, **1995**, *91*, 3489-3494. [Crossref], [Google Scholar], [Publisher]

18. N.K. Singh, S.K. Tiwari, K.L. Anitha, R.N. Singh, *J. Chem. Soc. Faraday Trans.*, **1996**, *92*, 2397-2400. [Crossref], [Google Scholar], [Publisher]

19. J. Miki, M. Asanuma, Y. Tachibana, T. Shikada, *J. Catal.*, **1995**, *151*, 323-329. [Crossref], [Google Scholar], [Publisher]

20. K.P. Tikhomolova, I.B. Dmitrieva, M.V. Ivanova, *Russ. J. Appl. Chem.*, **1998**, *4*, 550-555. [Elibrary], [Google Scholar], [Publisher]

21. G.R. Dube, V.S. Darshane, *Bull. Chem. Soc. Jpn.*, **1991**, *64*, 2449-2453. [Crossref], [Google Scholar], [Publisher]

22. N.M. Deraz, J. Anal. Appl. Pyrolysis, **2008**, 82, 212-222. [Crossref], [Google Scholar], [Publisher]

23. F.C. Romeijn, *Philips Res. Rep.*, **1953**, *8*, 304. [Crossref], [Google Scholar], [Publisher]

24. G. Blasse, *Philips Res. Rep. Suppl.*, **1964**, *3*,
96. [Crossref], [Google Scholar], [Publisher]
25. R. Parella, A. Kumar, S. Arulananda Babu, *Tetrahedron Lett.*, **2013**, *54*, 1738-1742.
[Crossref], [Google Scholar], [Publisher] Journal of Applied Organometallic Chemistry

26. A.R. Hajipour, M. Karimzadeh, G. Azizi, *Chin. Chem. Lett.*, **2014**, *25*, 1382-1386. [Crossref], [Google Scholar], [Publisher]

27. G. Satish, K.H. Vardhan Reddy, B.S.P. Anil, J. Shankar, R.U. Kumar, Y.V.D. Nageswar, *Tetrahedron Lett.*, **2014**, *55*, 5533-5538. [Crossref], [Google Scholar], [Publisher]

28. T. Liu, L. Wang, P. Yang, B. Hu, *Mater. Lett.*, **2008**, *62*, 4056-4058. [Crossref], [Google Scholar], [Publisher]

29. Z. Sun, L. Liu, D. Z. Jia, W. Pan, *Sens. Actuators B*, **2007**, *125*, 144-148. [Crossref], [Google Scholar], [Publisher]

30. D. Yang, B. An, W. Wei, M. Jiang, J. You, H. Wang, *Tetrahedron Lett.*, **2014**, *70*, 3630-3634. [Crossref], [Google Scholar], [Publisher]

31. G. Satish, K.H. Vardhan Reddy, K. Ramesh, B.S.P. Anil Kumar, Y.V.D. Nageswar, *Tetrahedron Lett.*, **2014**, *55*, 2596-2599. [Crossref], [Google Scholar], [Publisher]

32. R.K. Akula, C.S. Adimulam, S. Gangaram, R. Kengiri, N. Banda, *Lett. Org. Chem.*, **2014**, *11*, 440-445. [Crossref], [Google Scholar], [Publisher]

33. B.S.P. Anil Kumar, K.H. Vardhan Reddy, B. Madhav, K. Ramesh, Y.V.D. Nageswar, *Tetrahedron Lett.*, **2012**, *53*, 4595-4599. [Crossref], [Google Scholar], [Publisher]

34. B. Sreedhar, A. Suresh Kumar, D. Yada, *Tetrahedron Lett.*, **2011**, *52*, 3565-3569. [Crossref], [Google Scholar], [Publisher]

35. K.L. Chandra, P. Saravanan, R.K. Singh, V.K. Singh, *Tetrahedron*, **2002**, *58*, 1369-1374. [Crossref], [Google Scholar], [Publisher]

36. S. Kanta De, *Tetrahedron Lett.*, **2004**, *45*, 2919-2922. [Crossref], [Google Scholar], [Publisher]

37. A.K. Chakraborti, L. Sharma, R. Gulhane, Shivani, *Tetrahedron*, **2003**, *59*, 7661-7668. [Crossref], [Google Scholar], [Publisher]

38. A.K. Chakraborti, R. Gulhane, *Chem. Commun.*, **2003**, 1896-1897. [Crossref], [Google Scholar], [Publisher]

39. K. Jeyakumar, D. Kumar Chand, *J. Mol. Catal. A Chem.*, **2006**, *255*, 275-282. [Crossref], [Google Scholar], [Publisher]

40. Shivani, R. Gulhane, A.K. Chakraborti, *J. Mol. Catal. A Chem.*, **2007**, *264*, 208-213. [Crossref], [Google Scholar], [Publisher]

Journal of Applied Organometallic Chemistry

41. A.K. Chakraborti, R. Gulhane, *Tetrahedron Lett.*, **2003**, *44*, 3521-3525. [Crossref], [Google Scholar], [Publisher]

42. K.J. Ratnam, R.S. Reddy, N.S. Sekhar, M.L. Kantam, F. Figueras, *J. Mol. Catal. A Chem.*, **2007**, *276*, 230-234. [Crossref], [Google Scholar], [Publisher]

43. R. Alleti, M. Perambuduru, S. Samantha, V. Prakash Reddy, *J. Mol. Catal. A Chem.*, **2005**,

2021, Volume 1, Issue 4

226, 57-59. [Crossref], [Google Scholar], [Publisher]

44. R. Qiu, Y. Zhu, X. Xu, Y. Li, L. Shao, X. Ren, X. Cai, D. An, S. Yin, *Catal. Commun.*, **2009**, *10*, 1889-1892. [Crossref], [Google Scholar], [Publisher]

45. P. Christian, P. O'Brien, *J. Mater. Chem.*, **2005**, *15*, 4949-4954. [Crossref], [Google Scholar], [Publisher]

Copyright © 2021 by SPC (<u>Sami Publishing Company</u>) + is an open access article distributed under the Creative Commons Attribution License (CC BY) license (<u>https://creativecommons.org/licenses/by/4.0/</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.