Document Type : Original Article

Authors

1 University of Raparin, College of Science, Department of Chemistry, 46012, Sulamani, Iraq

2 Physics Department, College of Science, University of Halabja, 46018, Halabja, Iraq

3 Department of Opticianry, Darende Bekir Ilicak Vocational School, Malatya Turgut Ozal University, Malatya, Türkiye

4 Koya University, Faculty of Science & Health, Department of Chemistry, Koya KOY45, Kurdistan Region – F.R., Iraq

5 General Science Department, Faculty of Education, Soran University, Soran 44008, Iraq

6 Medical Biochemical Analysis Department, College of Health Technology, Cihan University-Erbil, Kurdistan Region, Erbil 44008, Iraq

Abstract

The novelty of the work lies in the application of quantum computing analysis, specifically employing density functional theory (DFT) and Hartree-Fock (HF) techniques with various basis sets (aug-cc-pVQZ, 3-21G, 6-31G, 6-311G, and SDD), this work examined the structure and characteristics of naphthalene. The theoretical nature of naphthalene's structure and characteristics:  Highest Occupied Molecular Orbital (HOMO), Lowest Unoccupied Molecular Orbital (LUMO), band gap BG, density of state (DOS), Ultraviolet (UV), and Natural Bond Orbital (NBO) are explored. Several additional characteristics have been studied: thermochemical properties at standard temperature and pressure, and their optical properties (Optical BG with the indirect and direct transition).  The DFT/aug-cc-pVQZ basis was used with a fixed value of 4.75 eV to determine the HOMO-LUMO gap of naphthalene in this investigation. We find that the gaps of 4.71, 4.873, and 4.74 eV, respectively, in a recent density-functional theory (DFT) study that agrees with our results. 

Graphical Abstract

Quantum Computing Analysis of Naphthalene Compound: Electronic Structure, Optical, and Thermochemical Approaches using DFT and HF

Keywords

Main Subjects

[1]. R. Lu, J. Wu, R.P. Turco, A.M. Winer, R. Atkinson, J. Arey, S.E. Paulson, F.W. Lurmann, A.H. Miguel, A. Eiguren-Fernandez, Naphthalene distributions and human exposure in Southern California, Atmospheric Environment, 2005, 39, 489-507. [Crossref], [Google Scholar], [Publisher]
[2]. S. Makar, T. Saha, S.K. Singh, Naphthalene, a versatile platform in medicinal chemistry: sky-high perspective, European Journal of Medicinal Chemistry, 2019, 161, 252-276. [Crossref], [Google Scholar], [Publisher]
[3]. S.V. Bhosale, C.H. Jani, S.J. Langford, Chemistry of naphthalene diimides, Chemical Society Reviews, 2008, 37, 331-342. [Crossref], [Google Scholar], [Publisher]
[4]. C. Jia, S. Batterman, A critical review of naphthalene sources and exposures relevant to indoor and outdoor air, International Journal of Environmental Research and Public Health, 2010, 7, 2903-2939. [Crossref], [Google Scholar], [Publisher]
[5]. R. Goldstein, H.H. Cho, A review of mass transfer measurements using naphthalene sublimation, Experimental Thermal and Fluid Science, 1995, 10, 416-434. [Crossref], [Google Scholar], [Publisher]
[6]. O. Rebaz, R.F. Rashid, K. Othman, Exploring the synthesis of 1, 2, 4-triazole derivatives: A comprehensive review, Journal of Physical Chemistry and Functional Materials, 6, 43-56. [Crossref], [Google Scholar], [Publisher]
[7]. A. Buckpitt, B. Boland, M. Isbell, D. Morin, M. Shultz, R. Baldwin, K. Chan, A. Karlsson, C. Lin, A. Taff, Naphthalene-induced respiratory tract toxicity: metabolic mechanisms of toxicity, Drug Metabolism Reviews, 2002, 34, 791-820. [Crossref], [Google Scholar], [Publisher]
[8]. C.S. McEnally, L.D. Pfefferle, Improved sooting tendency measurements for aromatic hydrocarbons and their implications for naphthalene formation pathways, Combustion and Flame, 2007, 148, 210-222. [Crossref], [Google Scholar], [Publisher]
[9]. B. Mohapatra, P.S. Phale, Microbial degradation of naphthalene and substituted naphthalenes: metabolic diversity and genomic insight for bioremediation, Frontiers in Bioengineering and Biotechnology, 2021, 9, 602445. [Crossref], [Google Scholar], [Publisher]
[10]. E.R. Lippincott, E.J. O'Reilly Jr, Vibrational spectra and assignment of naphthalene and naphthalene‐d‐8, Journal of Chemical Physics, 1955, 23, 238-244. [Crossref], [Google Scholar], [Publisher]
[11]. P. Rai, K. Maji, S.K. Jana, B. Maji, Intermolecular dearomative [4+2] cycloaddition of naphthalenes via visible-light energy-transfer-catalysis, Chemical Science, 2022, 13, 12503-12510. [Crossref], [Google Scholar], [Publisher]
[12]. O. Rebaz, L. AHMED, H. Jwameer, P. KOPARIR, Structural analysis of epinephrine by combination of density functional theory and hartree-fock methods, El-Cezeri, 2021, 9, 760-776. [Crossref], [Google Scholar], [Publisher
[13]. W.F. Guerin, S.A. Boyd, Differential bioavailability of soil-sorbed naphthalene to two bacterial species, Applied and Environmental Microbiology, 1992, 58, 1142-1152. [Crossref], [Google Scholar], [Publisher]
[14]. U. Pandya, M.K. Saini, G.F. Jin, S. Awasthi, B.F. Godley, Y.C. Awasthi, Dietary curcumin prevents ocular toxicity of naphthalene in rats, Toxicology Letters, 2000, 115, 195-204. [Crossref], [Google Scholar], [Publisher]
[15]. R. Anwar Omar, P. Koparir, M. Koparir, D.A. Safin, A novel cyclobutane-derived thiazole–thiourea hybrid with a potency against COVID-19 and tick-borne encephalitis: Synthesis, characterization, and computational analysis, Journal of Sulfur Chemistry, 2024, 45, 120-137. [Crossref], [Google Scholar], [Publisher]
[16]. K.M. Yen, C.M. Serdar, I.C. Gunsalus, Genetics of naphthalene catabolism in pseudomonads, CRC Critical Reviews in Microbiology, 1988, 15, 247-268. [Crossref], [Google Scholar], [Publisher
[17]. O. Rebaz, P. Koparir, I. Qader, L. Ahmed, Theoretical determination of corrosion inhibitor activities of naphthalene and tetralin, Gazi University Journal of Science, 2022, 35, 434-444. [Crossref], [Google Scholar], [Publisher]
[18]. S.A. Siadati, E. Vessally, A. Hosseinian, L. Edjlali, Possibility of sensing, adsorbing, and destructing the Tabun-2D-skeletal (Tabun nerve agent) by C20 fullerene and its boron and nitrogen doped derivatives, Synthetic Metals, 2016, 220, 606-611. [Crossref], [Google Scholar], [Publisher]
[19]. E. Vessally, S.A. Siadati, A. Hosseinian, L. Edjlali, Selective sensing of ozone and the chemically active gaseous species of the troposphere by using the C20 fullerene and graphene segment, Talanta, 2017, 162, 505-510. [Crossref], [Google Scholar], [Publisher]
[20]. H. Jouypazadeh, H. Farrokhpour, E. Vessally, The adsorption of sulfur mustard chemical warfare agent on the Ga12N12 and Ca12O12 nanocages; A systematic DFT study, Computational and Theoretical Chemistry, 2023, 1230, 114358. [Crossref], [Google Scholar], [Publisher]
[21]. H. Jouypazadeh, S. Arshadi, B.C. Panduro, A. Kumar, S. Habibzadeh, S. Ahmadi, E. Vessally, Metalloporphyrin reduced C70 fullerenes as adsorbents and detectors of ethenone; A DFT, NBO, and TD-DFT study, Journal of Molecular Graphics and Modelling, 2023, 122, 108481. [Crossref], [Google Scholar], [Publisher
[22]. E. Vessally, M. Hosseinali, M.R. Poor Heravi, B.J.J.o.S.C. Mohammadi, DFT study of the adsorption of simple organic sulfur gases on g-C3N4; periodic and non-periodic approaches, Journal of Sulfur Chemistry, 2023, 44,  733-50. [Crossref], [Google Scholar], [Publisher]
[23]. H. Kebiroglu, O.A. Hamad, O. Kaygili, N. Bulut, Epinephrine compound: Unveiling its optical and thermochemical properties via quantum computation methods, SSRN, 2023. [Crossref], [Google Scholar], [Publisher]
[24]. T. Mohr, V. Aroulmoji, R.S. Ravindran, M. Müller, S. Ranjitha, G. Rajarajan, P. Anbarasan, DFT and TD-DFT study on geometries, electronic structures and electronic absorption of some metal free dye sensitizers for dye sensitized solar cells, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 135, 1066-1073. [Crossref], [Google Scholar], [Publisher]
[25]. S.A. Siadati, Effect of steric congestion on the stepwise character and synchronicity of a 1, 3-dipolar reaction of a nitrile ylide and an olefin, Journal of Chemical Research, 2015, 39, 640-644. [Crossref], [Google Scholar], [Publisher]
[26]. J.L. Gázquez, A. Cedillo, A. Vela, Electrodonating and electroaccepting powers, Journal of Physical Chemistry A, 2007, 111, 1966-1970. [Crossref], [Google Scholar], [Publisher]
[27]. D.M. Mamand, Y.H. Azeez, H.M. Qadr, Monte Carlo and DFT calculations on the corrosion inhibition efficiency of some benzimide molecules, Mongolian Journal of Chemistry, 2023, 24. [Crossref], [Google Scholar], [Publisher]
[28]. H.H. Rasul, D.M. Mamad, Y.H. Azeez, R.A. Omer, K.A.J.C. Omer, T. Chemistry, Theoretical investigation on corrosion inhibition efficiency of some amino acid compounds, Computational and Theoretical Chemistry, 2023, 1225, 114177. [Crossref], [Google Scholar], [Publisher]
[29]. M. El Idrissi, S. Elharfaoui, Z. Zmirli, A. Mouhssine, A. Dani, B. Salle, A. Tounsi, K. Digua, H. Chaair, Theoretical and experimental study of the orientation to the most effective coagulant for removing reactive black-5 dye from industrial effluents, Physical Chemistry Research, 2024, 12, 229-248. [Crossref], [Google Scholar], [Publisher]
[30]. O. Hamad, R.O. Kareem, O. Kaygili, Density function theory study of the physicochemical characteristics of 2-nitrophenol, Journal of Physical Chemistry and Functional Materials, 2023, 6, 70-76. [Crossref], [Google Scholar], [Publisher]
[31]. M. Sucheta, A. Pramod, M. Zikriya, K.M. Salma, N. Venugopal, R. Chaithra, D. Harshitha, S. Amudan, C. Renuka, S. Murthy, Frontier molecular orbital, molecular structure and Thermal properties of 2, 4, 6, 8-tetramethyl-2, 3, 6, 7-tetrahydro-s-indacene-1, 5-dione using DFT calculation, Materials Today: Proceedings, 2022, 62, 5241-5244. [Crossref], [Google Scholar], [Publisher]
[32]. N.M. O'boyle, A.L. Tenderholt, K.M. Langner, Cclib: a library for package‐independent computational chemistry algorithms, Journal of Computational Chemistry, 2008, 29, 839-845. [Crossref], [Google Scholar], [Publisher]
[33]. H. Shahab, Y. Husain, Theoretical study for chemical reactivity descriptors of tetrathiafulvalene in gas phase and solvent phases based on density functional theory, Passer Journal of Basic and Applied Sciences, 2021, 3, 167-173. [Crossref], [Google Scholar], [Publisher]
[34]. S. Hekim, Y.H. Azeez, S. Akpinar, The theoretical investigation of the HOMO, LUMO energies and chemical reactivity of C9H12 and C7F3NH5Cl molecules, Journal of Physical Chemistry and Functional Materials, 2019, 2, 29-31. [Crossref], [Google Scholar], [Publisher]
[35]. C.-G. Zhan, J.A. Nichols, D.A. Dixon, Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies, Journal of Physical Chemistry A, 2003, 107, 4184-4195. [Crossref], [Google Scholar], [Publisher]
[36]. F. Sessa, M. Rahm, Electronegativity equilibration, Journal of Physical Chemistry A, 2022, 126, 5472-5482. [Crossref], [Google Scholar], [Publisher]
[37]. F. Yang, A.A. Zibrov, R. Bai, T. Taniguchi, K. Watanabe, M.P. Zaletel, A.F.J.P.r.l. Young, Experimental determination of the energy per particle in partially filled Landau levels, Physical Review Letters, 2021, 126, 156802. [Crossref], [Google Scholar], [Publisher]
[38]. A.E. Parlak, R.A. Omar, P. Koparir, M.I. Salih, Experimental, DFT and theoretical corrosion study for 4-(((4-ethyl-5-(thiophen-2-yl)-4H-1, 2, 4-triazole-3-yl) thio) methyl)-7, 8-dimethyl-2H-chromen-2-one, Arabian Journal of Chemistry, 2022, 15, 104088. [Crossref], [Google Scholar], [Publisher]
[39]. D.M. Mamad, R.A. Omer, K.A. Othman, Quantum chemical analysis of amino acids as anti-corrosion agents, Corrosion Reviews, 2023, 41, 703-17. [Crossref], [Google Scholar], [Publisher]
[40]. D.M. Mamad, H.H. Rasul, A.H. Awla, R.A. Omer, Insight into corrosion inhibition efficiency of imidazole-based molecules: A quantum chemical study, Doklady Physical Chemistry, 2023, 511, 125-133. [Crossref], [Google Scholar], [Publisher]
[41]. H.H. Rasul, D.M. Mamad, Y.H. Azeez, R.A. Omer, K.A. Omer, Theoretical investigation on corrosion inhibition efficiency of some amino acid compounds, Computational and Theoretical Chemistry, 2023, 114177. [Crossref], [Google Scholar], [Publisher]
[42]. F. İsen, O. Kaygili, N. Bulut, T. Ates, F. Osmanlıoğlu, S. Keser, B. Tatar, İ. Özcan, B. Ates, F. Ercan, Experimental and theoretical characterization of Dy-doped hydroxyapatites, Journal of the Australian Ceramic Society, 2023, 59, 849-864. [Crossref], [Google Scholar], [Publisher]
[43]. R.O. Kareem, O. Kaygili, T. Ates, N. Bulut, S. Koytepe, A. Kuruçay, F. Ercan, I. Ercan, Experimental and theoretical characterization of Bi-based hydroxyapatites doped with Ce, Ceramics International, 2022, 48, 33440-33454. [Crossref], [Google Scholar], [Publisher]
[44]. A.A. Korkmaz, L.O. Ahmed, R.O. Kareem, H. Kebiroglu, T. Ates, N. Bulut, O. Kaygili, B. Ates, Theoretical and experimental characterization of Sn-based hydroxyapatites doped with Bi, Journal of the Australian Ceramic Society, 2022, 58, 803-815. [Crossref], [Google Scholar], [Publisher]
[45]. R.O. Kareem, O. Kaygili, Synthesis and Characterization of Bismuth-based hydroxyapatites doped with cerium, Master's Thesis, 2023. [Crossref], [Google Scholar]
[46]. G. Venkatesh, Y. Sheena mary, Y. Shymamary, V. Palanisamy, M. Govindaraju, Quantum chemical calculations and molecular docking studies of some phenothiazine derivatives, Journal of Applied Organometallic Chemistry, 2021, 1, 148-158. [Crossref], [Google Scholar], [Publisher]
[47]. F.A. Rad. J.T. Mehrabad. M.D. Esrafili, A communal experimental and DFT study on structural and photocatalytic properties of nitrogen-doped TiO2, Advanced Journal of Chemistry, Section A, 2023, 6, 244-252. [Crossref], [Google Scholar], [Publisher]