Document Type : Original Article

Authors

1 Department Of Chemistry, Yeshwant Mahavidyalaya, Nanded- 431602 (MS); affiliated to SRTM University Nnanded, India

2 Department of Chemistry, Sambhajirao Kendre Mahavidyalay Jalkot tq. Jalkot Dist. Latur, India

3 Gramin (Art's, commerce and science) Mahavidyalaya, Vasant Nagar (Kotgyal), TQ.Mukhed, Dist.Nanded- 431715, India

Abstract

Abstract

A series of β-carboline derivatives have been modified at C-1 sites of the aryl ring and tested for the Insilco Estrogen Receptor inhibitory study. all the designed molecules show an excellent bonding score with 5ACC Estrogen Receptor protein. The position of the proposed ligands BC-6, and BC-12 in the binding site of protein is superimposable with the native ligand and shows the hydrogen bonding with the LEU:346 amino acid residues. The ADME studies show that groups BC-6 and BC-12 show good human intestinal CYP1A2 inhibitor, CYP2C19 inhibitor, CYP2C9 inhibitor, CYP3A4 inhibitor, CYP3A4 inhibitor activity with Log Kp (skin permeation) -5.43 cm/s, while Ramachandran plot for BC-6 indicate, molecules show the 100% favorable region in the pocket of enzyme 5ACC. While the BC-6 and BC-12 can cross the BBB barrier. This study indicates that from all the synthesized molecules, the scaffold BC-6 and BC-12 show excellent activity.

Graphical Abstract

In silico Estrogen Receptor activity evaluation of some β-carboline derivatives through molecular docking approach and target prediction by ADME study

Keywords

Main Subjects

  1. Piechowska, R. Zawirska-Wojtasiak, S. Mildner-Szkudlarz, Nutrients., 2019, 11, 814. [Crossref],[Google Scholar], [Publisher]
  2. Szabó, B. Volk, M. Milen, Molecules., 2021, 27, 663. [Crossref], [Google Scholar], [Publisher]
  3. H. França, D.P. Barbosa, D.L. da Silva, E.A. Ribeiro, A.E. Santana, B.V. Santos, J.M. Barbosa-Filho, J.S. Quintans, R.S. Barreto, L.J. Quintans-Júnior, J.X. de Araújo-Júnior, Biomed Res Int., 2014, 375423. [Crossref], [Google Scholar], [Publisher]
  4. Sakai, H. Kato, H. Rotinsulu, F. Losung, R. E. Mangindaan, N. J. de Voogd, H. Yokosawa, S. Tsukamoto S., J Nat Med., 2014, 68, 215-9. [Crossref], [Google Scholar], [Publisher]
  5. Lourdes, C. Peña-Farfal, P. Yáñez-Sedeño, J.M. Pingarrón, Analytica Chimica Acta, 2007, 585, 323-330. [Crossref], [Google Scholar], [Publisher]
  6. M. Iraksinen, I. Kari, Effects. Med Biol., 1981. [Publisher]
  7. Herraiz, A. Peña, H. Mateo, M. Herraiz, A. Salgado, J. Agric. Food Chem., 2022, 70, 9143–9153. [Crossref], [Google Scholar], [Publisher]
  8. Faheem, B.K. Kumar, K.V.G. C.Sekhar, S. Kunjiappan, J. Jamalis, R. Balaña-Fouce, M. Sankaranarayanan, Recent Update on the Anti-infective Potential of β-carboline Analogs, 2021, 21, 398-425. [Crossref], [Google Scholar], [Publisher]
  9. Kumar, A. Singh, K. Kumar, V. Kumar, European Journal of Medicinal Chemistry, 2017, 142, 48-73. [Crossref], [Google Scholar], [Publisher]
  10. Max Headley, D. Lodge, Brain Research, 1976, 01, 479-488. [Crossref], [Google Scholar], [Publisher]
  11. M. Quan, H.B.Q.G. Anh, N.T.N. Hang, D.H. Toan, D.V. Ha, P.Q.C. Long, Regional Studies in Marine Science, 2022, 102619. [Crossref], [Google Scholar], [Publisher]
  12. V. Gaikwad, S.V. Gaikwad, R.D. Kamble, Current Research in Green and Sustainable Chemistry, 2022, 5, 100268. [Crossref], [Google Scholar], [Publisher]
  13. Gaikwad, D. Kamble, P. Lokhande, Tetrahedron Lett., 2018, 59, 2387–2392. [Crossref], [Google Scholar], [Publisher].
  14. V. Gaikwad, M.V. Gaikwad, P.D. Lokhande, J. Heterocycl. Chem., 2021, 58, 1408-1414. [Crossref], [Google Scholar], [Publisher]
  15. V. Gaikwad, D.N. Nadimetla, M. Al Kobaisi, M. Devkate, R. Joshi, R. G. Shinde, M.V. Gaikwad, M.D. Nikalje, S.V. Bhosale, P.D. Lokhande, Chemistry Select, 2019, 4, 10054-10059. [Crossref], [Google Scholar], [Publisher]
  16. J.Y. Macalino, V. Gosu, S. Hong, Arch. Pharm. Res., 2015, 38, 1686–1701. [Crossref], [[Google Scholar], [[Publisher]
  17. Yu, A.D. MacKerell, Methods in Molecular Biology, 2017, 1520, 85-106. [Crossref], [Google Scholar], [Publisher]
  18. H. Van Drie, J Comput Aided Mol Des, 2007, 21, 591–601. [Crossref], [Google Scholar], [Publisher]
  19. Gaikwad, M. Gaikwad, P. Lokhande, Eurasian Chemical Communications, 2020, 2, 945-952. [Crossref], [Google Scholar], [Publisher]
  20. Gaikwad, M. Basavanag Unnamatla, Journal of Applied Organometallic Chemistry, 2022, 2, 24-30. [Crossref], [Google Scholar], [Publisher]
  21. Gaikwad, S. Gaikwad, R. Kamble, J. Med. Chem. Sci., 2022, 5, 239-248. [Crossref], [Google Scholar] [Publisher]
  22. Mohammadi Ziarani, S. Afsharnia, A. Badiei, P. Gholamzadeh. J. Appl. Organomet. Chem., 2021, 1, 202-206 [Crossref], [Google Scholar], [Publisher]
  23. V. Gaikwad, M.V. Gaikwad, P.D. Lokhande, J. Appl. Organomet. Chem., 2021, 1, 1‐8. [Crossref], [Google Scholar], [Publisher]
  24. S. Khansole, D. Prasad, J.A. Angulwar, A.B. Atar, B.M. Nagaraja, A.H. Jadhav, Vijay N. Bhosale, Materials Today: Proceedings, 2019, 9, 653-660. [Crossref], [Google Scholar], [Publisher]
  25. Abinaya, S. Srinath, S. Soundarya, R, Sridhar, K.K. Balasubramanian, B. Baskar, Journal of Molecular Structure, 2022, 1261, 132750. [Crossref], [Google Scholar], [Publisher]
  26. Takahashi, J Antibiot, 2022, 75, 432–444. [Crossref], [Google Scholar], [Publisher]
  27. W.T. Lam, S.W.I. Siu, Biochemistry and Molecular Biology, 2017, 45, 76-83. [Crossref], [Google Scholar], [Publisher]
  28. Li, K.S. Leung, M.H. Wong, P.J. Ballester, Molecular Informatics, 2015, 34, 115-126. [Crossref], [Google Scholar], [Publisher]
  29. BIOVIA, Dassault Systèmes, BIOVIA Discovery Studio Visualizer, San Diego: Dassault Systems, 2021. [Publisher]
  30. De Savi, R.H. Bradbury, A.A. Rabow, R.A. Norman, J Med Chem, 2015, 58, 8128. [Crossref], [Google Scholar], [Publisher]]
  31. A. Hollingsworth, P.A. Karplus, Biomol Concepts., 2010, 1, 271-283. [Crossref], [Google Scholar], [Publisher]