Document Type : Original Article

Authors

1 Department of Chemistry, Shivaji Mahavidyala Udgir-413517, Dist: Latur, Affiliated to S. R. T. M. University, Nanded, India

2 Department of Chemistry, Shivaji Mahavidyala Renapur-413527, Dist: Latur, Affiliated to S. R. T. M. University, Nanded, India

Abstract

In the present protocol, we have developed a new and competent route for the development of benzimidazole staring with the aromatic diamine with differently substituted benzaldehyde in presence of catalyst Pentafluorophenylammonium triflate (PFPAT) at room temperature. The synthesized compound was further purified by recrystallisation with hot ethyl alcohol. The protocol works effectively for the benzimidazole synthesis and produces good yield. The incorporated method is environmental friendly, requires very less energy and catalyst can be good at activity even after 2-cycle run. The synthesized compounds were characterized by several analytical tools. The key advantages of this method are simple process, trouble-free work up procedure, and easy isolation of catalyst at the end of the reaction. 

Graphical Abstract

Efficient Synthesis of Benzimidazole Incorporated by PFPAT Catalyst at Room Temperature

Keywords

Main Subjects

OPEN ACCESS

©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

PUBLISHER NOTE

Sami Publishing Company remains neutral concerning jurisdictional claims in published maps and institutional affiliations.

CURRENT PUBLISHER

Sami Publishing Company 

[1]. R. Abonia, E. Cortés, B. Insuasty, J. Quiroga, M. Nogueras, J. Cobo, Synthesis of novel 1, 2, 5-trisubstituted benzimidazoles as potential antitumor agents, European Journal of Medicinal Chemistry, 2011, 46, 4062-4070. [Crossref], [Google Scholar], [Publisher]
[2]. A.K. Chaturvedi, A.S. Negi, P. Khare, A simple and straightforward synthesis of substituted 2-arylbenzimidazoles over silica gel, RSC Advances, 2013, 3, 4500-4504. [Crossref], [Google Scholar], [Publisher]
[3]. D. Carcanague, Y.K. Shue, M.A. Wuonola, M. Uria-Nickelsen, C. Joubran, J.K. Abedi, J. Jones, T.C. Kühler, Novel structures derived from 2-[(2-pyridyl) methyl] thio]-1H-benzimidazole as anti-helicobacter p ylori agents, Part 2, Journal of Medicinal Chemistry, 2002, 45, 4300-4309. [Crossref], [Google Scholar], [Publisher]
[4]. M. Lezcano, W. Al-Soufi, M. Novo, E. Rodríguez-Núñez, J.V. Tato, Complexation of several benzimidazole-type fungicides with α-and β-cyclodextrins, Journal of Agricultural and Food Chemistry, 2002, 50, 108-112. [Crossref], [Google Scholar], [Publisher]
[5]. N.M. Aghatabay, M. Somer, M. Senel, B. Dulger, F. Gucin, Raman, FT-IR, NMR spectroscopic data and antimicrobial activity of bis [μ2-(benzimidazol-2-yl)-2-ethanethiolato-N, S, S-chloro-palladium (II)] dimer,[(μ2-CH2CH2NHNCC6H4) PdCl]2·C2H5OH complex, European Journal of Medicinal Chemistry, 2007, 42, 1069-1075. [Crossref], [Google Scholar], [Publisher]
[6]. S. Demirayak, A.C. Karaburun, I. Kayagil, U. Uçucu, R. Beis, Synthesis and analgesic activities of some 2-(benzazolylacetyl) amino-3-ethoxycarbonylthiophene derivatives, Phosphorus, Sulfur, and Silicon and the Related Elements, 2005, 180, 1841-1848. [Crossref], [Google Scholar], [Publisher]
[7]. A. Spasov, I. Yozhitsa, L. Bugaeva, V. Anisimova, Benzimidazole derivatives: Spectrum of pharmacological activity and toxicological properties (a review), Pharmaceutical Chemistry Journal, 1999, 33, 232-243. [Crossref], [Google Scholar], [Publisher]
[8]. N. Shrivastava, M.J. Naim, M.J. Alam, F. Nawaz, S. Ahmed, O. Alam, Benzimidazole scaffold as anticancer agent: Synthetic approaches and structure–activity relationship, Archiv der Pharmazie, 2017, 350, e201700040. [Crossref], [Google Scholar], [Publisher]  
[9]. A.K. Tewari, A. Mishra, Synthesis and antiviral activities of N-substituted-2-substituted-benzimidazole derivatives, Indian Journal of Chemistry, Section B-organic Chemistry Including Medicinal Chemistry, 2006, 45, 489–493. [Crossref], [Google Scholar], [Publisher]
[10]. Z. Kazimierczuk, J.A. Upcroft, P. Upcroft, A. Górska, B. Starościak, A. Laudy, Synthesis, antiprotozoal and antibacterial activity of nitro-and halogeno-substituted benzimidazole derivatives, Acta Biochimica Polonica, 2002, 49, 185-195. [Crossref], [Google Scholar], [Publisher]
[11]. K. Ansari, C. Lal, Synthesis, physicochemical properties and antimicrobial activity of some new benzimidazole derivatives, European Journal of Medicinal Chemistry, 2009, 44, 4028-4033. [Crossref], [Google Scholar], [Publisher]
[12]. K. Starčević, M. Kralj, K. Ester, I. Sabol, M. Grce, K. Pavelić, G. Karminski-Zamola, Synthesis, antiviral and antitumor activity of 2-substituted-5-amidino-benzimidazoles, Bioorganic & Medicinal Chemistry, 2007, 15, 4419-4426. [Crossref], [Google Scholar], [Publisher]
[13]. L. Labanauskas, A. Brukštus, P. Gaidelis, V. Buchinskaite, E. Udrenaite, V. Daukšas, Synthesis and antiinflammatory activity of some new 1-acyl derivatives of 2-methylthio-5, 6-diethoxybenzimidazole, Pharmaceutical Chemistry Journal, 2004, 34, 353-355. [Crossref], [Google Scholar], [Publisher]
[14]. K. Ito, H. Kagaya, T. Fukuda, K. Yoshino, T. Nose, Pharmacological studies of a new non-steroidal antiinflammatory drug: 2-(5-ethylpyridin-2-yl) benzimidazole (KB-1043), Arzneimittel-Forschung, 1982, 32, 49-55. [Google Scholar], [Publisher]
[15]. B. Can-Eke, M.O. Puskullu, E. Buyukbingol, M. Iscan, A study on the antioxidant capacities of some benzimidazoles in rat tissues, Chemico-Biological Interactions, 1998, 113, 65-77. [Crossref], [Google Scholar], [Publisher]
[16]. R.V. Shingalapur, K.M. Hosamani, R.S. Keri, M.H. Hugar, Derivatives of benzimidazole pharmacophore: Synthesis, anticonvulsant, antidiabetic and DNA cleavage studies, European Journal of Medicinal Chemistry, 2010, 45, 1753-1759. [Crossref], [Google Scholar], [Publisher]
[17]. M. Ishikawa, K. Nonoshita, Y. Ogino, Y. Nagae, D. Tsukahara, H. Hosaka, H. Maruki, S. Ohyama, R. Yoshimoto, K. Sasaki, Discovery of novel 2-(pyridine-2-yl)-1H-benzimidazole derivatives as potent glucokinase activators, Bioorganic & Medicinal Chemistry Letters, 2009, 19, 4450-4454. [Crossref], [Google Scholar], [Publisher]
[18]. B. Pathare, T. Bansode, Biological active benzimidazole derivatives, Results in Chemistry, 2021, 3, 100200. [Crossref], [Google Scholar], [Publisher]
[19]. J.M. Gardiner, C.R. Loyns, A. Burke, A. Khan, N. Mahmood, Synthesis and HIV-1 inhibition of novel benzimidazole derivatives, Bioorganic & Medicinal Chemistry Letters, 1995, 5, 1251-1254. [Crossref], [Google Scholar], [Publisher]
[20]. D. Woolley, Some biological effects produced by benzimidazole and their reversal by purines, Journal of Biological Chemistry, 1944, 152, 225-232. [Google Scholar], [Publisher]
[21]. N.G. Brink, K. Folkers, Vitamin B12. VI. 5, 6-Dimethylbenzimidazole, a degradation product of vitamin B12, Journal of the American Chemical Society, 1949, 71, 2951-2951. [Crossref], [Google Scholar], [Publisher]
[22]. R. Zhang, Z. Cheng, C. Zang, C. Cui, C. Zhang, Y. Jiao, F. Li, X. Li, K. Yang, Q. Luo, Supplementation of 5, 6-dimethylbenzimidazole and cobalt in high-concentrate diet improves the ruminal vitamin B12 synthesis and fermentation of sheep, Fermentation, 2023, 9, 956. [Crossref], [Google Scholar], [Publisher]
[23]. M.M. Heravi, F. Derikvand, L. Ranjbar, Sulfamic acid–catalyzed, three-component, one-pot synthesis of [1, 2, 4] triazolo/benzimidazolo quinazolinone derivatives, Synthetic Communications, 2010, 40, 677-685. [Crossref], [Google Scholar], [Publisher]
[24]. J.J.V. Eynde, F. Delfosse, P. Lor, Y. Van Haverbeke, 2, 3-Dichloro-5, 6-dicyano-1, 4-benzoquinone, a mild catalyst for the formation of carbon-nitrogen bonds, Tetrahedron, 1995, 51, 5813-5818. [Crossref], [Google Scholar], [Publisher]
[25]. Y. Venkateswarlu, S.R. Kumar, P. Leelavathi, Facile and efficient one-pot synthesis of benzimidazoles using lanthanum chloride, Organic and Medicinal Chemistry Letters, 2013, 3, 1-8. [Crossref], [Google Scholar], [Publisher]
[26]. L.H. Du, Y.G. Wang, A rapid and efficient synthesis of benzimidazoles using hypervalent iodine as oxidant, Synthesis, 2007, 2007, 675-678. [Crossref], [Google Scholar], [Publisher]
[27]. V.A. Sontakke, S. Ghosh, P.P. Lawande, B.A. Chopade, V.S. Shinde, A simple, efficient synthesis of 2-aryl benzimidazoles using silica supported periodic acid catalyst and evaluation of anticancer activity, International Scholarly Research Notices, 2013, 2013. [Crossref], [Google Scholar], [Publisher]
[28]. A.H. Jadhav, A. Chinnappan, R.H. Patil, W.-J. Chung, H. Kim, Deprotection of tert-butyldimethylsilyl (TBDMS) ethers using efficient and recyclable heterogeneous silver salt of silicotungstic acid catalyst under mild reaction condition, Chemical Engineering Journal, 2014, 236, 300-305. [Crossref], [Google Scholar], [Publisher]
[29]. R.K. Kannasani, V.S. Peruri, S.R. Battula, NaHSO4-SiO2 as an efficient and chemoselective catalyst, for the synthesis of acylal from aldehydes under, solvent-free conditions, Chemistry Central Journal, 2012, 6, 1-4. [Crossref], [Google Scholar], [Publisher]
[30]. I. Bhatnagar, M.V. George, Oxidation with metal oxides—II: Oxidation of chalcone phenylhydrazones, pyrazolines, o-aminobenzylidine anils and o-hydroxy benzylidine anils with manganese dioxide, Tetrahedron, 1968, 24, 1293-1298. [Crossref], [Google Scholar], [Publisher]
[31]. M. Saha, A.R. Das, I2/TBHP promoted oxidative C–N bond formation at room temperature: Divergent access of 2-substituted benzimidazoles involving ring distortion, Tetrahedron Letters, 2018, 59, 2520-2525. [Crossref], [Google Scholar], [Publisher]
[32]. A.O. Fasiku, M.T. Fortunato, I. Chakraborty, K. Kavallieratos, Mercury (II) sensing via cyclization of a dithioamide into a benzimidazole derivative: A structural and spectroscopic study, Inorganica Chimica Acta, 2020, 510, 119680. [Crossref], [Google Scholar], [Publisher]
[33]. S. Bonacci, G. Iriti, S. Mancuso, P. Novelli, R. Paonessa, S. Tallarico, M. Nardi, Montmorillonite K10: An efficient organo-heterogeneous catalyst for synthesis of benzimidazole derivatives, Catalysts, 2020, 10, 845. [Crossref], [Google Scholar], [Publisher]
[34]. M. Walle, D. Pansare, T. Khan, R. Pawar, R. Shelke, R. Ingle, One-Pot three-component synthesis of 2-amino-5-oxo-4, 5-dihydropyrano [3, 2-c] chromene-3-carbonitrile derivatives catalyzed by cobalt doped iron (III) tartrate complex, Letters in Applied NanoBioScience, 2021, 11, 3208-3217. [Crossref], [Google Scholar]
[35]. M. Walle, R. Ingle, R. Pawar, Efficient and one-pot synthesis of tetrahydro[b]Pyran derivatives catalyzed by copper doped iron tartarate, Journal of Scientific Research, 2021, 65, 62-65. [Crossref], [Google Scholar], [Publisher]
[36]. M.R. Walle, D.N. Pansare, S. Kamble, R.P. Pawar, R.D. Ingale, Synthesis of 1,8-dioxooctahydroxanthene and 3, 3-arylidene bis (4-hydroxycoumarin) derivatives, European Chemical Bulletin, 2019, 8, 101-104. [Google Scholar], [Publisher]