Document Type : Original Article

Authors

1 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, West Sumatra, Indonesia

2 Center for Advanced Material Processing, Artificial Intelligence and Biophysics Informatics (CAMPBIOTICS), Universitas Negeri Padang, Indonesia

3 Institute of Ocean and Earth Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia

4 Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India

5 Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, 26 Talalikhin Str., Moscow 109316, Russia

6 Faculty of Biotechnology and Food Engineering, Ural State Agrarian University, 42 Karl Liebknecht str., Yekaterinburg, 620075, Russia

7 Department of Animal Husbandry, Faculty of Agricultural, Universitas Tamansiswa Padang, Indonesia

8 Department of Biological Sciences, Faculty of Allied Health Sciences, Faculty of Allied Health Sciences, The Superior University, Lahore, Pakistan

9 International School of Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan

Abstract

Serotonin analgesics from banana (Musa paradisiaca) fruit have been investigated to determine potential interactions with serotonin 1 b (5-HT1b) receptors at the molecular level. The study utilized an in silico approach to predict the interaction between serotonin analgesics and receptor proteins. The research method involved the use of Pymol, MOE 2015, Discovery Studio, and Lipinski Rule software. The use of Pymol and MOE was used for visualization of the molecular structures of serotonin analgesics and receptor proteins. Discovery Studio was used to analyze the interaction between serotonin analgesic and receptor protein, which revealed the presence of binding between the two with Binding Affinity of -5.1297 and -11.1061 and RMSD of 1.7373 and 3.7057. In addition, analysis by Lipinski Rule revealed the molecular characteristics of the serotonin analgesic, including a mass of 196, no hydrogen bond donor, two hydrogen bond acceptors, a log P of 3.023, and a molar reactivity of 56.390. These results demonstrate the analgesic potential of serotonin in interacting with serotonin 1 b (5-HT1b) receptors, which may form the basis for further research in drug development related to serotonin-based pain treatment. 

Graphical Abstract

Analgesic Serotonin from Banana Fruit (Musa paradisiaca) on Serotonin 1 b (5-HT1b) Receptor Protein In Silico

Keywords

Main Subjects

[1]. V. Galani, Musa paradisiaca Linn.-A comprehensive review, Scholars International Journal of Traditional and Complementary Medicine, 2019, 45-56. [Crossref], [Google Scholar]
[2]. A. Mohiuddin, M.K. Saha, M.S. Hossian, A. Ferdoushi, Usefulness of banana (Musa paradisiaca) wastes in manufacturing of bio-products: A review, Agriculturists, 2014, 12, 148-158. [Crossref], [Google Scholar]
[3]. N. Rajesh, Medicinal benefits of Musa paradisiaca (Banana), International Journal of Biology Research, 2017, 2, 51-54. [Crossref], [Google Scholar]
[4]. J. García-Nafría, R. Nehmé, P.C. Edwards, C.G. Tate, Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go, Nature, 2018, 558, 620-623. [Crossref], [Google Scholar], [Publisher]
[5]. D. David, A. Gardier, The pharmacological basis of the serotonin system: Application to antidepressant response, L'encephale, 2016, 42, 255-263. [Crossref], [Google Scholar], [Publisher]
[6]. E. Silk, M. Diwan, T. Rabelo, H. Katzman, A.C.P. Campos, F.V. Gouveia, P. Giacobbe, N. Lipsman, C. Hamani, Serotonin 5-HT1B receptors mediate the antidepressant-and anxiolytic-like effects of ventromedial prefrontal cortex deep brain stimulation in a mouse model of social defeat, Psychopharmacology, 2022, 239, 3875-3892. [Crossref], [Google Scholar], [Publisher]
[7]. L. Fang, S. He, P. Yin, N. Wang, B. Zhang, H. Jin, Design, synthesis, and structure–Activity relationship studies of novel tryptamine derivatives as 5‑HT1B receptor agonists, Journal of Molecular Structure, 2022, 1265, 133320. [Crossref], [Google Scholar], [Publisher]
[8]. S. Sahebnasagh, J. Fadaee Kakhki, M. Ebrahimi, M.R. Bozorgmehr, M.R. Abedi, Pre-concentration and determination of fluoxetine in hospital wastewater and human hair samples using solid-phase µ-extraction by silver nanoparticles followed by spectro-fluorimetric, Chemical Methodologies, 2021, 5, 211-218. [Crossref], [Google Scholar], [Publisher]
[9]. D. Kemisetti, D.B.B. Rajeswar Das, A comprehensive review on Musa Paradisiaca taxonomical, morphological classification and its pharmacological activities, Journal of Pharmaceutical Negative Results, 2022, 737-749. [Crossref], [Google Scholar], [Publisher]
[10]. A. Rana, A. Goel, S. Yadav, S. Praveen, T. Kumar, A review on pharmacological activities of banana (Musa Paradisiaca), International Journal of Pharmaceutical Research and Applications, 2023, 8, 2901-2910. [Crossref], [Publisher]
[11]. S. Abbasbeigi, Misfolded structures|A brief insight into protein aggregation criteria, which may lead to Proteopathy diseases, Journal of Chemical Reviews, 2021, 3, 97-108. [Crossref], [Google Scholar], [Publisher]
[12]. B.E. Ehigiator, N.C. Offonry, E. Adikwu, B.O. Inemesit, Safety, anti-inflammatory and analgesic assessments of methanolic extract of Musa paradisiaca peel in Sprague Dawley rats, African Journal of Pharmacology and Therapeutics, 2018, 7. [Google Scholar], [Publisher]
[13]. H.S. Budi, W.S. Juliastuti, Y.P. Sulistyowati, The bleeding and clotting time analysis of the stem extract of Musa paradisiaca var. sapientum (L.) Kunze on hemostatic response, Jordan Journal of Pharmaceutical Sciences, 2021, 14, 1-8. [Google Scholar], [Publisher]
[14]. N.S. Aini, V.D. Kharisma, M.H. Widyananda, A.A.A. Murtadlo, R.T. Probojati, D.D.R. Turista, M.B. Tamam, V. Jakhmola, E. Yuniarti, S. Al Aziz, In silico screening of bioactive compounds from Garcinia mangostana L. against SARS-CoV-2 via tetra inhibitors, Pharmacognosy Journal, 2022, 14. [Crossref], [Google Scholar], [Publisher]
[15]. A.T. Rahman, A. Jethro, P. Santoso, V.D. Kharisma, A.A.A. Murtadlo, D. Purnamasari, N.H. Soekamto, A. Ansori, R.S. Mandeli, K.A.M.S. Aledresi, In silico study of the potential of endemic sumatra wild turmeric rhizomes (Curcuma Sumatrana: Zingiberaceae) as anti-cancer, Pharmacognosy Journal, 2022, 14. [Crossref], [Google Scholar], [Publisher]
[16]. N. Mawaddani, E. Sutiyanti, M.H. Widyananda, V.D. Kharisma, D.D.R. Turista, M.B. Tamam, V. Jakhmola, B.R. Fajri, M.R. Ghifari, M.T. Albari, In silico study of entry inhibitor from Moringa oleifera bioactive compounds against SARS-CoV-2 infection, Pharmacognosy Journal, 2022, 14. [Crossref], [Google Scholar], [Publisher]
[17]. S.P. Bangar, N. Sharma, H. Kaur, M. Kaur, K.S. Sandhu, S. Maqsood, F. Ozogul, A review of sapodilla (Manilkara zapota) in human nutrition, health, and industrial applications, Trends in Food Science & Technology, 2022, 127, 319-334. [Crossref], [Google Scholar], [Publisher]
[18]. B. Salehi, F. Sharopov, P.V.T. Fokou, A. Kobylinska, L.d. Jonge, K. Tadio, J. Sharifi-Rad, M.M. Posmyk, M. Martorell, N. Martins, Melatonin in medicinal and food plants: Occurrence, bioavailability, and health potential for humans, Cells, 2019, 8, 681. [Crossref], [Google Scholar], [Publisher]
[19]. M.E. Ullah, R.T. Probojati, A.A.A. Murtadlo, M.B. Tamam, S.W. Naw, Revealing of antiinflamatory agent from zingiber officinale var. Roscoe via IKK-B inhibitor mechanism through in silico simulation, SAINSTEK International Journal on Applied Science, Advanced Technology and Informatics, 2022, 1, 14-19. [Crossref], [Google Scholar], [Publisher]
[20]. P. Listiyani, V.D. Kharisma, A.N.M. Ansori, M.H. Widyananda, R.T. Probojati, A.A.A. Murtadlo, D.D.R. Turista, M.E. Ullah, V. Jakhmola, R. Zainul, In silico phytochemical compounds screening of Allium sativum targeting the Mpro of SARS-CoV-2, Pharmacognosy Journal, 2022, 14. [Crossref], [Google Scholar], [Publisher]
[21]. P. Listiyani, S.L. Utami, D.D.R. Turista, A. Wiguna, A. Wijayanti, Y. Rachmawati, A.F. Dibha, T. Hasan, M.A. Hafidzhah, R.M. Wijaya, Computational screening of toxicity, drug-like molecule, and bioactivity from green tea phytochemical as antiviral candidate, SAINSTEK International Journal on Applied Science, Advanced Technology and Informatics, 2022, 1, 39-45. [Crossref], [Google Scholar]
[22]. W. Yin, X.E. Zhou, D. Yang, P.W. de Waal, M. Wang, A. Dai, X. Cai, C.-Y. Huang, P. Liu, X. Wang, Crystal structure of the human 5-HT1B serotonin receptor bound to an inverse agonist, Cell discovery, 2018, 4, 12. [Crossref], [Google Scholar], [Publisher]
[23]. C. Gadgaard, A.A. Jensen, Functional characterization of 5-HT1A and 5-HT1B serotonin receptor signaling through G-protein-activated inwardly rectifying K+ channels in a fluorescence-based membrane potential assay, Biochemical pharmacology, 2020, 175, 113870. [Crossref], [Google Scholar], [Publisher]
[24]. L. Van Huyen, T.Q. Toan, P.Q. Long, P.M. Quan, Computer aided screening of indirubin analogues targeting GSK-3β protein using molecular docking, Biomedical Journal of Scientific & Technical Research, 2019, 14844-14845. [Crossref], [Google Scholar], [Publisher]
[25]. V.D. Kharisma, A.N.M. Ansori, F.A. Dian, W.C. Rizky, T.G.A. Dings, R. Zainul, A.P. Nugraha, Molecular docking and dynamic simulation of entry inhibitor from tamarindus indica bioactive compounds against SARS-CoV-2 infection via viroinformatics study, Biochemical and Cellular Archives, 2021, 21, 3323-3327. [Crossref], [Google Scholar]
[26]. N.S. Aini, V.D. Kharisma, M.H. Widyananda, A.A.A. Murtadlo, R.T. Probojati, D.D.R. Turista, M.B. Tamam, V. Jakhmola, D.P. Sari, M.T. Albari, In silico screening of bioactive compounds from Syzygium cumini L. and moringa oleifera L. against SARS-CoV-2 via tetra inhibitors, Pharmacognosy Journal, 2022, 14. [Crossref], [Google Scholar], [Publisher]
[27]. A.A. Rabaan, M.A. Halwani, M. Aljeldah, B.R. Al Shammari, M. Garout, J. Aldali, A. Alawfi, A. Alshengeti, A.M. Alsulaiman, A. Alsayyah, Exploration of potent antiviral phytomedicines from Lauraceae family plants against SARS-CoV-2 RNA-dependent RNA polymerase, Journal of Biomolecular Structure and Dynamics, 2023, 1-21. [Crossref], [Google Scholar], [Publisher]
[28]. F. Maryam, H. Mukhtar, I. Bibi, M. Rizwan, S. Khan, A. Mehmood, Ligand based pharmacophore modelling, virtual screening and molecular docking of novel compounds against diabetes, Bulletin (Eugenics Society (London, England)), 2019, 8, 38-48. [Crossref], [Publisher]
[29]. M. Réau, F. Langenfeld, J.-F. Zagury, N. Lagarde, M. Montes, Decoys selection in benchmarking datasets: overview and perspectives, Frontiers in Pharmacology, 2018, 9, 11. [Crossref], [Google Scholar], [Publisher]
[30]. L. Pinzi, G. Rastelli, Molecular docking: shifting paradigms in drug discovery, International Journal of Molecular Sciences, 2019, 20, 4331. [Crossref], [Google Scholar], [Publisher]
[31]. R. Selvaraj, G. Hemalatha, K. Sivakumari, In silico molecular docking stuides of Muricin J, Muricin K and Muricin L compound from A. muricata against apoptotic proteins (caspase-3, caspase-9 and β-actin), Innoriginal: International Journal of Sciences, 2020, 1-4. [Google Scholar], [Publisher]
[32]. X. Lin, X. Li, X. Lin, A review on applications of computational methods in drug screening and design, Molecules, 2020, 25, 1375. [Crossref], [Google Scholar], [Publisher]
[33]. H. Patel, A. Kukol, Integrating molecular modelling methods to advance influenza A virus drug discovery, Drug Discovery Today, 2021, 26, 503-510. [Crossref], [Google Scholar], [Publisher]
[34]. A. Dibha, S. Wahyuningsih, A. Ansori, V. Kharisma, M. Widyananda, A. Parikesit, M. Sibero, R. Probojati, A. Murtadlo, J. Trinugroho, Utilization of secondary metabolites in algae Kappaphycus alvarezii as a breast cancer drug with a computational method, Pharmacognosy Journal, 2022, 14. [Crossref], [Google Scholar], [Publisher]
[35]. O.A. Ojo, A.B. Ojo, C. Okolie, M.-A.C. Nwakama, M. Iyobhebhe, I.O. Evbuomwan, C.O. Nwonuma, R.F. Maimako, A.E. Adegboyega, O.A. Taiwo, Deciphering the interactions of bioactive compounds in selected traditional medicinal plants against Alzheimer’s diseases via pharmacophore modeling, auto-QSAR, and molecular docking approaches, Molecules, 2021, 26, 1996. [Crossref], [Google Scholar], [Publisher]
[36]. S.A. Attique, M. Hassan, M. Usman, R.M. Atif, S. Mahboob, K.A. Al-Ghanim, M. Bilal, M.Z. Nawaz, A molecular docking approach to evaluate the pharmacological properties of natural and synthetic treatment candidates for use against hypertension, International Journal of Environmental Research and Public Health, 2019, 16, 923. [Crossref], [Google Scholar], [Publisher]
[37]. M.B. de Ávila, W.F. de Azevedo Jr, Development of machine learning models to predict inhibition of 3‐dehydroquinate dehydratase, Chemical Biology & Drug Design, 2018, 92, 1468-1474. [Crossref], [Google Scholar], [Publisher]
[38]. G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu, A. Lu, ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties, Nucleic Acids Research, 2021, 49, W5-W14. [Crossref], [Google Scholar], [Publisher]
[39]. J. Lemkul, From proteins to perturbed Hamiltonians: a suite of tutorials for the GROMACS-2018 molecular simulation package [Article v1. 0]. Living Journal of Computational Molecular Science, 2019, 1, 1–53. [Crossref], [Google Scholar], [Publisher]
[40]. J. Han, L. Geng, C. Lu, J. Zhou, Y. Li, T. Ming, Z. Zhang, X. Su, Analyzing the mechanism by which oyster peptides target IL-2 in melanoma cell apoptosis based on RNA-seq and m6A-seq, Food & Function, 2023, 14, 2362-2373. [Crossref], [Google Scholar], [Publisher]
[41]. A. Ansori, V. Kharisma, A. Parikesit, F. Dian, R. Probojati, M. Rebezov, P. Scherbakov, P. Burkov, G. Zhdanova, A. Mikhalev, Bioactive compounds from mangosteen (Garcinia mangostana L.) as an antiviral agent via dual inhibitor mechanism against SARSCoV-2: An in silico approach, Pharmacognosy Journal, 2022, 14. [Crossref], [Google Scholar], [Publisher]
[42]. N.R. Jabir, M.T. Rehman, K. Alsolami, S. Shakil, T.A. Zughaibi, R.F. Alserihi, M.S. Khan, M.F. AlAjmi, S. Tabrez, Concatenation of molecular docking and molecular simulation of BACE-1, γ-secretase targeted ligands: in pursuit of Alzheimer’s treatment, Annals of Medicine, 2021, 53, 2332-2344. [Crossref], [Google Scholar], [Publisher]
[43]. N.S. Aini, V.D. Kharisma, M.H. Widyananda, A.A. Ali Murtadlo, R.T. Probojati, D.D. Rahma Turista, M.B. Tamam, V. Jakhmola, D. Novaliendry, R.S. Mandeli, Bioactive compounds from purslane (Portulaca oleracea L.) and star anise (Illicium verum Hook) as SARS-CoV-2 antiviral agent via dual inhibitor mechanism: In silico approach, Pharmacognosy Journal, 2022, 14. [Crossref], [Google Scholar], [Publisher]
[44]. N. Contreras, A. Alviz-Amador, I. Manzur-Villalobos, In silico study of dimethyltryptamine analogues against 5-HT1B receptor: Molecular docking, dynamic simulations and ADMET prediction, Journal of Herbmed Pharmacology, 2022, 11, 204-212. [Crossref], [Google Scholar], [Publisher]
[45]. R.T. Probojati, S.L. Utami, D.D.R. Turista, A. Wiguna, A. Wijayanti, Y. Rachmawati, A.F. Dibha, A.A.A. Murtadlo, T. Hasan, P. Listiyani, B-cell epitope mapping of capsid L1 from human papillomavirus to development cervical cancer vaccine through in silico study, SAINSTEK International Journal on Applied Science, Advanced Technology and Informatics, 2022, 1, 62-71. [Crossref], [Google Scholar]
[46]. A. Dibha, S. Wahyuningsih, A. Ansori, V. Kharisma, M. Widyananda, A. Parikesit, M. Sibero, R. Probojati, A. Murtadlo, J. Trinugroho, Utilization of secondary metabolites in algae Kappaphycus alvarezii as a breast cancer drug with a computational method, Pharmacognosy Journal, 2022, 14. [Crossref], [Google Scholar], [Publisher]
[47]. A.A.A. Murtadlo, P. Listiyani, S.L. Utami, S. Wahyuningsih, D.D.R. Turista, A. Wiguna, A. Wijayanti, Y. Rachmawati, A.F. Dibha, T. Hasan, Molecular docking study of nigella sativa bioactive compound as E6 inhibitor against human papillomavirus (HPV) infection, SAINSTEK International Journal on Applied Science, Advanced Technology and Informatics, 2022, 1, 32-38. [Crossref], [Google Scholar], [Publisher]
[48]. N. Bung, S.R. Krishnan, A. Roy, An in silico explainable multiparameter optimization approach for de novo drug design against proteins from the central nervous system, Journal of Chemical Information and Modeling, 2022, 62, 2685-2695. [Crossref], [Google Scholar], [Publisher
[49]. S. Choudhary, Y.S. Malik, S. Tomar, Identification of SARS-CoV-2 cell entry inhibitors by drug repurposing using in silico structure-based virtual screening approach, Frontiers in Immunology, 2020, 11, 1664. [Crossref], [Google Scholar], [Publisher]
[50]. K. Anam, B. Prabowo, M.T. Kusuma, S. Winarsih, T.Y.M. Raras, S.R. Prawiro, Multi epitopes potential on surface sars-cov-2 protein as a covid-19 vaccine candidate, Research Journal of Pharmacy and Technology, 2022, 15, 1437-1442. [Crossref], [Google Scholar], [Publisher
[51]. H. Guo, H. Zeng, C. Fu, J. Huang, J. Lu, Y. Hu, Y. Zhou, L. Luo, Y. Zhang, L. Zhang, Identification of sitogluside as a potential skin-pigmentation-reducing agent through network pharmacology, Oxidative Medicine and Cellular Longevity, 2021, 2021. [Crossref], [Google Scholar], [Publisher]
[52]. V.D. Kharisma, A. Agatha, A.N.M. Ansori, M.H. Widyananda, W.C. Rizky, T.G.A. Dings, M. Derkho, I. Lykasova, Y. Antonius, I. Rosadi, Herbal combination from Moringa oleifera Lam. and Curcuma longa L. as SARS-CoV-2 antiviral via dual inhibitor pathway: A viroinformatics approach, Journal of Pharmacy & Pharmacognosy Research, 2021, 10, 138-146. [Crossref], [Google Scholar], [Publisher]
[53]. M.E. Ullah, S.W. Naw, A.A.A. Murtadlo, M.B. Tamam, R.T. Probojati, Molecular mechanism of black tea (Camellia sinensis) as SARS-CoV-2 spike glycoprotein inhibitor through computational approach, SAINSTEK International Journal on Applied Science, Advanced Technology and Informatics, 2022, 1, 20-25. [Google Scholar]
[54]. W. Yin, X.E. Zhou, D. Yang, P.W. de Waal, M. Wang, A. Dai, X. Cai, C.-Y. Huang, P. Liu, X. Wang, Crystal structure of the human 5-HT1B serotonin receptor bound to an inverse agonist, Cell Discovery, 2018, 4, 12. [Crossref], [Google Scholar], [Publisher]
[55]. M. Zweckstetter, A. Dityatev, E. Ponimaskin, Structure of serotonin receptors: molecular underpinning of receptor activation and modulation, Signal Transduction and Targeted Therapy, 2021, 6, 243. [Crossref], [Google Scholar], [Publisher]  
[56]. P. Xu, S. Huang, H. Zhang, C. Mao, X.E. Zhou, X. Cheng, I.A. Simon, D.-D. Shen, H.-Y. Yen, C.V. Robinson, Structural insights into the lipid and ligand regulation of serotonin receptors, Nature, 2021, 592, 469-473. [Crossref], [Google Scholar], [Publisher]
[57]. F. Shojaie, Quantum computations of interactions of most reactive tricyclic antidepressant drug with carbon nanotube, serotonin and norepinephrine, Chemical Methodologies, 2020, 4, 447-466. [Crossref], [Google Scholar], [Publisher]